Suppr超能文献

CheY与CheZ的C端肽段的相互作用。

Interaction of CheY with the C-terminal peptide of CheZ.

作者信息

Guhaniyogi Jayita, Wu Ti, Patel Smita S, Stock Ann M

机构信息

Center for Advanced Biotechnology and Medicine, 679 Hoes Lane, Piscataway, NJ 08854, USA.

出版信息

J Bacteriol. 2008 Feb;190(4):1419-28. doi: 10.1128/JB.01414-07. Epub 2007 Dec 14.

Abstract

Chemotaxis, a means for motile bacteria to sense the environment and achieve directed swimming, is controlled by flagellar rotation. The primary output of the chemotaxis machinery is the phosphorylated form of the response regulator CheY (P-CheY). The steady-state level of P-CheY dictates the direction of rotation of the flagellar motor. The chemotaxis signal in the form of P-CheY is terminated by the phosphatase CheZ. Efficient dephosphorylation of CheY by CheZ requires two distinct protein-protein interfaces: one involving the strongly conserved C-terminal helix of CheZ (CheZ(C)) tethering the two proteins together and the other constituting an active site for catalytic dephosphorylation. In a previous work (J. Guhaniyogi, V. L. Robinson, and A. M. Stock, J. Mol. Biol. 359:624-645, 2006), we presented high-resolution crystal structures of CheY in complex with the CheZ(C) peptide that revealed alternate binding modes subject to the conformational state of CheY. In this study, we report biochemical and structural data that support the alternate-binding-mode hypothesis and identify key recognition elements in the CheY-CheZ(C) interaction. In addition, we present kinetic studies of the CheZ(C)-associated effect on CheY phosphorylation with its physiologically relevant phosphodonor, the histidine kinase CheA. Our results indicate mechanistic differences in phosphotransfer from the kinase CheA versus that from small-molecule phosphodonors, explaining a modest twofold increase of CheY phosphorylation with the former, observed in this study, relative to a 10-fold increase previously documented with the latter.

摘要

趋化作用是运动性细菌感知环境并实现定向游动的一种方式,它受鞭毛旋转的控制。趋化机制的主要输出是应答调节蛋白CheY的磷酸化形式(P-CheY)。P-CheY的稳态水平决定了鞭毛马达的旋转方向。P-CheY形式的趋化信号由磷酸酶CheZ终止。CheZ对CheY的高效去磷酸化需要两个不同的蛋白质-蛋白质界面:一个涉及CheZ高度保守的C端螺旋(CheZ(C)),它将两种蛋白质拴在一起;另一个构成催化去磷酸化的活性位点。在之前的一项工作(J. Guhaniyogi、V. L. Robinson和A. M. Stock,《分子生物学杂志》359:624 - 645,2006年)中,我们展示了CheY与CheZ(C)肽复合物的高分辨率晶体结构,该结构揭示了受CheY构象状态影响的交替结合模式。在本研究中,我们报告了支持交替结合模式假说的生化和结构数据,并确定了CheY-CheZ(C)相互作用中的关键识别元件。此外,我们还对CheZ(C)与其生理相关的磷酸供体组氨酸激酶CheA对CheY磷酸化的相关影响进行了动力学研究。我们的结果表明,激酶CheA的磷酸转移与小分子磷酸供体的磷酸转移在机制上存在差异,这解释了在本研究中观察到的CheY磷酸化与前者相比适度增加两倍,而与后者相比之前记录的增加了10倍。

相似文献

1
Interaction of CheY with the C-terminal peptide of CheZ.
J Bacteriol. 2008 Feb;190(4):1419-28. doi: 10.1128/JB.01414-07. Epub 2007 Dec 14.
3
Mutations in the chemotactic response regulator, CheY, that confer resistance to the phosphatase activity of CheZ.
Mol Microbiol. 1995 Mar;15(6):1069-79. doi: 10.1111/j.1365-2958.1995.tb02282.x.
5
The CheZ-binding surface of CheY overlaps the CheA- and FliM-binding surfaces.
J Biol Chem. 1997 Sep 19;272(38):23758-64. doi: 10.1074/jbc.272.38.23758.
6
Rapid phosphotransfer to CheY from a CheA protein lacking the CheY-binding domain.
Biochemistry. 2000 Oct 31;39(43):13157-65. doi: 10.1021/bi001100k.
7
Regulation of phosphatase activity in bacterial chemotaxis.
J Mol Biol. 1998 Dec 11;284(4):1191-9. doi: 10.1006/jmbi.1998.2224.
10
Phosphorylation and binding interactions of CheY studied by use of Badan-labeled protein.
Biochemistry. 2004 Jul 13;43(27):8766-77. doi: 10.1021/bi0495735.

引用本文的文献

1
Multistep Signaling in Nature: A Close-Up of Chemotaxis Sensing.
Int J Mol Sci. 2021 Aug 21;22(16):9034. doi: 10.3390/ijms22169034.
2
Ginsenoside Rg3 reduces the adhesion, invasion, and intracellular survival of serovar Typhimurium.
J Ginseng Res. 2021 Jan;45(1):75-85. doi: 10.1016/j.jgr.2019.09.002. Epub 2019 Sep 21.
5
Conformational barrier of CheY3 and inability of CheY4 to bind FliM control the flagellar motor action in Vibrio cholerae.
PLoS One. 2013 Sep 16;8(9):e73923. doi: 10.1371/journal.pone.0073923. eCollection 2013.
7
Binding of cyclic diguanylate in the non-catalytic EAL domain of FimX induces a long-range conformational change.
J Biol Chem. 2011 Jan 28;286(4):2910-7. doi: 10.1074/jbc.M110.196220. Epub 2010 Nov 22.
8
Auxiliary phosphatases in two-component signal transduction.
Curr Opin Microbiol. 2010 Apr;13(2):177-83. doi: 10.1016/j.mib.2010.01.004. Epub 2010 Feb 3.
9
The functional role of a conserved loop in EAL domain-based cyclic di-GMP-specific phosphodiesterase.
J Bacteriol. 2009 Aug;191(15):4722-31. doi: 10.1128/JB.00327-09. Epub 2009 Apr 17.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
3
Optimal description of a protein structure in terms of multiple groups undergoing TLS motion.
Acta Crystallogr D Biol Crystallogr. 2006 Apr;62(Pt 4):439-50. doi: 10.1107/S0907444906005270. Epub 2006 Mar 18.
4
Systems biology of bacterial chemotaxis.
Curr Opin Microbiol. 2006 Apr;9(2):187-92. doi: 10.1016/j.mib.2006.02.007. Epub 2006 Mar 9.
5
Signal transduction in bacterial chemotaxis.
Bioessays. 2006 Jan;28(1):9-22. doi: 10.1002/bies.20343.
7
A molecular viewer for the analysis of TLS rigid-body motion in macromolecules.
Acta Crystallogr D Biol Crystallogr. 2005 Apr;61(Pt 4):465-71. doi: 10.1107/S0907444905001897. Epub 2005 Mar 24.
8
Making sense of it all: bacterial chemotaxis.
Nat Rev Mol Cell Biol. 2004 Dec;5(12):1024-37. doi: 10.1038/nrm1524.
9
Refinement of macromolecular structures by the maximum-likelihood method.
Acta Crystallogr D Biol Crystallogr. 1997 May 1;53(Pt 3):240-55. doi: 10.1107/S0907444996012255.
10
Automated refinement of protein models.
Acta Crystallogr D Biol Crystallogr. 1993 Jan 1;49(Pt 1):129-47. doi: 10.1107/S0907444992008886.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验