Suppr超能文献

OperomeDB:原核生物基因组中特定条件转录单元的数据库。

OperomeDB: A Database of Condition-Specific Transcription Units in Prokaryotic Genomes.

作者信息

Chetal Kashish, Janga Sarath Chandra

机构信息

Department of Biohealth Informatics, School of Informatics and Computing, Indiana University-Purdue University Indianapolis (IUPUI), 719 Indiana Avenue, Suite 319, Walker Plaza Building, Indianapolis, IN 46202, USA.

Department of Biohealth Informatics, School of Informatics and Computing, Indiana University-Purdue University Indianapolis (IUPUI), 719 Indiana Avenue, Suite 319, Walker Plaza Building, Indianapolis, IN 46202, USA ; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, 5021 Health Information and Translational Sciences (HITS), 410 West 10th Street, Indianapolis, IN 46202, USA ; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Medical Research and Library Building, 975 West Walnut Street, Indianapolis, IN 46202, USA.

出版信息

Biomed Res Int. 2015;2015:318217. doi: 10.1155/2015/318217. Epub 2015 Oct 12.

Abstract

Background. In prokaryotic organisms, a substantial fraction of adjacent genes are organized into operons-codirectionally organized genes in prokaryotic genomes with the presence of a common promoter and terminator. Although several available operon databases provide information with varying levels of reliability, very few resources provide experimentally supported results. Therefore, we believe that the biological community could benefit from having a new operon prediction database with operons predicted using next-generation RNA-seq datasets. Description. We present operomeDB, a database which provides an ensemble of all the predicted operons for bacterial genomes using available RNA-sequencing datasets across a wide range of experimental conditions. Although several studies have recently confirmed that prokaryotic operon structure is dynamic with significant alterations across environmental and experimental conditions, there are no comprehensive databases for studying such variations across prokaryotic transcriptomes. Currently our database contains nine bacterial organisms and 168 transcriptomes for which we predicted operons. User interface is simple and easy to use, in terms of visualization, downloading, and querying of data. In addition, because of its ability to load custom datasets, users can also compare their datasets with publicly available transcriptomic data of an organism. Conclusion. OperomeDB as a database should not only aid experimental groups working on transcriptome analysis of specific organisms but also enable studies related to computational and comparative operomics.

摘要

背景。在原核生物中,相当一部分相邻基因被组织成操纵子——原核基因组中具有共同启动子和终止子的同向组织基因。尽管现有的几个操纵子数据库提供了可靠性程度各异的信息,但很少有资源提供实验支持的结果。因此,我们认为生物界会从拥有一个使用新一代RNA测序数据集预测操纵子的新操纵子预测数据库中受益。

描述。我们展示了操纵子数据库(OperomeDB),该数据库使用广泛实验条件下可用的RNA测序数据集,提供了细菌基因组所有预测操纵子的集合。尽管最近有几项研究证实原核生物操纵子结构是动态的,在不同环境和实验条件下有显著变化,但尚无用于研究原核转录组此类变异的综合数据库。目前我们的数据库包含9种细菌生物和168个转录组,我们对这些转录组预测了操纵子。在数据可视化、下载和查询方面,用户界面简单易用。此外,由于其能够加载自定义数据集,用户还可以将自己的数据集与某一生物的公开转录组数据进行比较。

结论。操纵子数据库(OperomeDB)作为一个数据库,不仅应有助于从事特定生物转录组分析的实验组,还应能推动与计算和比较操纵子学相关的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aac3/4620388/b55097a43237/BMRI2015-318217.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验