Schneider Antonius, Dinant Geert-Jan, Szecsenyi Joachim
Abteilung Aligemeinmedizin und Versorgungsforschung, Universitätsklinikum Heidelberg.
Z Arztl Fortbild Qualitatssich. 2006;100(2):121-7.
The dependency of the predictive values of tests on the prevalence of diseases is an escrow issue of clinical diagnostics. The relation between pre-test probability and post-test probability is well explained by Bayes' theorem, and the relation between prevalence and false diagnoses can be described well by modifying this theorem. In cases of low prevalence the positive predictive value (PPV) is lower and the false-positive predictive value (FPPV) higher. These aspects mainly depend on the test specificity. But basically, in cases of low prevalence there is a higher negative predictive value (NPV) and a lower false negative predictive value (FNVP). Depending on the sensitivity and specificity, NPV and FNPV vary only slightly in low prevalence ranges. These statistical relations are able to explain the typical mode of operation of general practitioners with their unselected patients. In order to increase PPV and decrease FPPV in the diagnostic workup, the GP must use his clinical experience, time and stepwise diagnostic procedures. More diagnostic studies are necessary to improve the diagnostic workup in patient care.
检验预测值对疾病患病率的依赖性是临床诊断中的一个重要问题。检验前概率与检验后概率之间的关系可用贝叶斯定理很好地解释,患病率与误诊之间的关系可通过对该定理进行修正来很好地描述。在患病率较低的情况下,阳性预测值(PPV)较低,假阳性预测值(FPPV)较高。这些方面主要取决于检验的特异性。但基本上,在患病率较低的情况下,阴性预测值(NPV)较高,假阴性预测值(FNVP)较低。根据敏感性和特异性,NPV和FNPV在低患病率范围内变化很小。这些统计关系能够解释全科医生对未经过筛选的患者的典型诊疗模式。为了在诊断检查中提高PPV并降低FPPV,全科医生必须运用其临床经验、时间和逐步的诊断程序。在患者护理中,需要更多的诊断研究来改善诊断检查。