Suppr超能文献

[贝叶斯估计在临床实践中作为诊断工具的应用]

[Use of Bayesian estimation as a diagnostic tool in clinical practice].

作者信息

Morita S

机构信息

Department of Anesthesia, Teikyo University School of Medicine, Ichihara Hospital.

出版信息

Masui. 1993 May;42(5):733-7.

PMID:8515552
Abstract

If one of the monitors indicates that perioperative myocardial ischemia is occurring, is it telling the truth or what is the probability of its telling the truth? This kind of question is imperative in the conduct of safe anesthesia practice. For this reason, we need to know, so called, the predictive value, which is essentially an application of Bayesian estimation. In this paper, fundamental knowledge and pitfalls in the issue of Bayesian estimation in relation to a predictive value are discussed and summarized. Prior probability, identical to the concept of prevalence is joined together with available information to form a posterior probability or a predictive value to make any clinically relevant decisions. The terms, sensitivity and specificity are defined and their relation to the predictive value is discussed as well. The architecture of Bayesian estimation is explained by taking examples from the literature.

摘要

如果其中一个监测仪显示围手术期心肌缺血正在发生,它说的是真的吗?或者它说出真实情况的概率是多少?在安全的麻醉实践中,这类问题至关重要。因此,我们需要了解所谓的预测价值,它本质上是贝叶斯估计的一种应用。本文讨论并总结了与预测价值相关的贝叶斯估计问题的基础知识和陷阱。先验概率与患病率的概念相同,它与可用信息结合在一起,形成后验概率或预测价值,以便做出任何临床相关决策。文中定义了敏感性和特异性这两个术语,并讨论了它们与预测价值的关系。通过引用文献中的例子来解释贝叶斯估计的架构。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验