Suppr超能文献

哺乳动物中的表观遗传学与表型变异

Epigenetics and phenotypic variation in mammals.

作者信息

Peaston Anne E, Whitelaw Emma

机构信息

School of Molecular and Microbial Biosciences, The University of Sydney, New South Wales 2006, Australia.

出版信息

Mamm Genome. 2006 May;17(5):365-74. doi: 10.1007/s00335-005-0180-2.

Abstract

What causes phenotypic variation? By now it is clear that phenotype is a result of the interaction between genotype and environment, in addition to variation not readily attributable to either. Epigenetic phenomena associated with phenotypic variation at the biochemical, cellular, tissue, and organism level are now well recognized and are likely to contribute to the "intangible variation" alluded to. While it is clear that epigenetic modifications are mitotically heritable, the fidelity of this process is not well understood. Inheritance through more than one generation of meioses is even less well studied. So it remains unclear to what extent epigenetic changes contribute to phenotypic variation in natural populations. How might such evidence be obtained? What are the features of phenotypes that might suggest an epigenetic component? How much of the epigenetic component is truly independent of genetic changes? The answers to such questions must come from studies designed specifically to detect subtle, stochastically determined phenotypic variation in suitable animal models.

摘要

是什么导致了表型变异?现在已经清楚的是,表型是基因型与环境相互作用的结果,此外还有一些变异难以简单归因于其中任何一方。在生物化学、细胞、组织和生物体水平上与表型变异相关的表观遗传现象现在已得到充分认识,并且可能导致了上述提到的“无形变异”。虽然表观遗传修饰在有丝分裂过程中是可遗传的,但这个过程的保真度尚未得到很好的理解。通过多代减数分裂的遗传研究得更少。因此,目前尚不清楚表观遗传变化在多大程度上导致自然种群中的表型变异。如何获得这样的证据呢?可能暗示存在表观遗传成分的表型特征有哪些?表观遗传成分中有多少是真正独立于基因变化的?这些问题的答案必须来自专门设计用于检测合适动物模型中细微的、随机决定的表型变异的研究。

相似文献

1
Epigenetics and phenotypic variation in mammals.
Mamm Genome. 2006 May;17(5):365-74. doi: 10.1007/s00335-005-0180-2.
3
Heritable germline epimutation is not the same as transgenerational epigenetic inheritance.
Nat Genet. 2007 May;39(5):574-5; author reply 575-6. doi: 10.1038/ng0507-574.
4
Heritable germline epimutations in humans.
Nat Genet. 2007 May;39(5):573-4; author reply 575-6. doi: 10.1038/ng0507-573b.
5
Germline epimutation: A basis for epigenetic disease in humans.
Ann N Y Acad Sci. 2005;1054:68-77. doi: 10.1196/annals.1345.009.
6
Erasure of MLH1 methylation in spermatozoa-implications for epigenetic inheritance.
Nat Genet. 2007 Nov;39(11):1289. doi: 10.1038/ng1107-1289.
9
Small RNAs and heritable epigenetic variation in plants.
Trends Cell Biol. 2014 Feb;24(2):100-7. doi: 10.1016/j.tcb.2013.08.001. Epub 2013 Sep 3.
10
[Genetic methylation in carcinogenesis and its application in clinical oncology].
Med Clin (Barc). 2006 Apr 1;126(12):455-6. doi: 10.1157/13086334.

引用本文的文献

1
3D Hepatocyte Model with Composite Nanofibers That Reproduced Human In Vivo Drug Clearance Profiles.
ACS Pharmacol Transl Sci. 2025 Apr 24;8(5):1424-1434. doi: 10.1021/acsptsci.5c00149. eCollection 2025 May 9.
2
Role of intraflagellar transport protein IFT140 in the formation and function of motile cilia in mammals.
Cell Mol Life Sci. 2025 May 10;82(1):198. doi: 10.1007/s00018-025-05710-z.
4
Unifying fragmented perspectives with additive deep learning for high-dimensional models from partial faceted datasets.
NPJ Biol Phys Mech. 2025;2(1):5. doi: 10.1038/s44341-025-00009-3. Epub 2025 Feb 24.
5
Epigenetic regulation in lung cancer.
MedComm (2020). 2023 Oct 26;4(6):e401. doi: 10.1002/mco2.401. eCollection 2023 Dec.
8
Developmental origins of diabetes mellitus: Environmental epigenomics and emerging patterns.
J Diabetes. 2023 Jul;15(7):569-582. doi: 10.1111/1753-0407.13403. Epub 2023 May 16.
10
Implication of the Mediterranean diet on the human epigenome.
J Prev Med Hyg. 2022 Oct 17;63(2 Suppl 3):E44-E55. doi: 10.15167/2421-4248/jpmh2022.63.2S3.2746. eCollection 2022 Jun.

本文引用的文献

1
Stem cell self-renewal controlled by chromatin remodeling factors.
Science. 2005 Dec 2;310(5753):1487-9. doi: 10.1126/science.1120140.
3
MLH1 germline epimutations as a factor in hereditary nonpolyposis colorectal cancer.
Gastroenterology. 2005 Nov;129(5):1392-9. doi: 10.1053/j.gastro.2005.09.003.
4
Strategies for dissecting epigenetic mechanisms in the mouse.
Nat Genet. 2005 Nov;37(11):1194-200. doi: 10.1038/ng1664.
5
Global loss of imprinting leads to widespread tumorigenesis in adult mice.
Cancer Cell. 2005 Oct;8(4):275-85. doi: 10.1016/j.ccr.2005.09.007.
6
A fine-scale map of recombination rates and hotspots across the human genome.
Science. 2005 Oct 14;310(5746):321-4. doi: 10.1126/science.1117196.
7
Selection on heritable phenotypic plasticity in a wild bird population.
Science. 2005 Oct 14;310(5746):304-6. doi: 10.1126/science.1117004.
8
The role of chromatin structure in regulating the expression of clustered genes.
Nat Rev Genet. 2005 Oct;6(10):775-81. doi: 10.1038/nrg1688.
9
Ribo-gnome: the big world of small RNAs.
Science. 2005 Sep 2;309(5740):1519-24. doi: 10.1126/science.1111444.
10
Genome-wide map of nucleosome acetylation and methylation in yeast.
Cell. 2005 Aug 26;122(4):517-27. doi: 10.1016/j.cell.2005.06.026.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验