Fanourgakis George S, Xantheas Sotiris S
Chemical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MS K1-83, Richland, Washington 99352, USA.
J Chem Phys. 2006 May 7;124(17):174504. doi: 10.1063/1.2193151.
The implementation of the physically accurate nonlinear dipole moment surface of the water monomer in the context of the Thole-type, polarizable, flexible interaction potential results in the only classical potential, which, starting from the gas phase value for the bend angle (104.52 degrees), reproduces its experimentally observed increase in the ice Ih lattice and in liquid water. This is in contrast to all other classical potentials to date, which predict a decrease of the monomer bend angle in ice Ih and in liquid water with respect to the gas phase monomer value. Simulations under periodic boundary conditions of several supercells consisting of up to 288 molecules of water used to sample the proton disorder in the ice Ih lattice yield an average value of vartheta(HOH)(I(h))=108.4 degrees +/-0.2 degrees for the minimized structures (T=0 K) and 108.1 degrees +/-2.8 degrees at T=100 K. Analogous simulations for liquid water predict an average value of vartheta(HOH)(liquid)=106.3 degrees +/-4.9 degrees at T=300 K. The increase of the monomer bend angle of water in condensed environments is attributed to the use of geometry-dependent charges that are used to describe the nonlinear character of the monomer's dipole moment surface. Our results suggest a new paradigm in the development of classical interaction potential models of water that can be used to describe condensed aqueous environments.
在Thole型、可极化、灵活相互作用势的背景下,水单体的物理精确非线性偶极矩面的实现产生了唯一的经典势,该势从弯曲角的气相值(104.52度)开始,再现了其在冰Ih晶格和液态水中实验观察到的增加。这与迄今为止所有其他经典势相反,后者预测冰Ih和液态水中单体弯曲角相对于气相单体值会减小。在由多达288个水分子组成的几个超胞的周期性边界条件下进行模拟,以采样冰Ih晶格中的质子无序,对于最小化结构(T = 0 K),得到的⦿(HOH)(I(h))平均值为108.4度±0.2度,在T = 100 K时为108.1度±2.8度。对液态水的类似模拟预测,在T = 300 K时,⦿(HOH)(液态)的平均值为106.3度±4.9度。凝聚环境中水分子单体弯曲角的增加归因于用于描述单体偶极矩面非线性特征的几何相关电荷的使用。我们的结果为水的经典相互作用势模型的发展提出了一种新的范式,该模型可用于描述凝聚态水环境。