Soleimani V D, Baum B R, Johnson D A
Agriculture and Agri-Food Canada, K.W. Neatby Building, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada.
Genome. 2006 Apr;49(4):389-96. doi: 10.1139/g05-119.
We used quantitative real-time PCR analysis to measure the copy number of the BARE-1 retrotransposon in 5 cultivars of barley (Hordeum vulgare), as well as in samples from its wild relative, Hordeum spontaneum. Two sets of PCR primers were used to amplify regions within the long terminal repeat (LTR) and the reverse transcriptase (RT) gene of BARE-1 (GenBank accession Z17327). The LTR primers detected an average of 2.148 x 105 +/- 0.012 x 105 copies per haploid genome among barley samples, whereas the RT primers detected an average of 1.588 x 104 +/- 0.085 x 104 copies. The average ratio of LTR:RT was estimated to be 13.5:1. This finding indicates that more than 7% of the barley genome is occupied by BARE-1 elements in the form of solo LTRs and another 2.6% of the genome is occupied by the full-length element. Taken together, BARE-1 sequences represent approximately 9.6% of the barley genome among the barley plants used in this study. For the above estimation, a genome size of 5.44 x 103 Mb for H. vulgare and 5.39 x 103 Mb for H. spontaneum were assumed. Our study on quantification results of the BARE-1 for a small group of barley cultivars showed that there are significant differences among cultivars in terms of BARE-1 copy number, providing further evidence that BARE-1 is active and has a major role in shaping the barley genome as a result of breeding and selection. Quantification results also showed that most of the elements (> 90%) are present as truncated copies (solo LTRs). These results show that there is a high level of recombination leading to the formation of truncated elements and a subsequent DNA loss from the genome. Taken together, our study provides a glimpse into a dynamic micro-evolutionary process that is the by-product of genome reshuffling and directional selection in barley breeding programs.
我们使用定量实时聚合酶链反应(PCR)分析来测定5个大麦(Hordeum vulgare)品种以及其野生近缘种野生大麦(Hordeum spontaneum)样本中BARE-1反转录转座子的拷贝数。使用两组PCR引物来扩增BARE-1(GenBank登录号Z17327)长末端重复序列(LTR)和逆转录酶(RT)基因内的区域。LTR引物在大麦样本中检测到每个单倍体基因组平均有2.148×10⁵±0.012×10⁵个拷贝,而RT引物检测到平均有1.588×10⁴±0.085×10⁴个拷贝。LTR与RT的平均比值估计为13.5:1。这一发现表明,超过7%的大麦基因组被单独LTR形式的BARE-1元件占据,另有2.6%的基因组被全长元件占据。综合来看,在本研究中使用的大麦植株中,BARE-1序列约占大麦基因组的9.6%。为了进行上述估计,假定普通大麦的基因组大小为5.44×10³Mb,野生大麦的基因组大小为5.39×10³Mb。我们对一小部分大麦品种的BARE-1定量结果研究表明,不同品种之间BARE-1拷贝数存在显著差异,这进一步证明BARE-1是活跃的,并且在育种和选择过程中对塑造大麦基因组起着重要作用。定量结果还表明,大多数元件(>90%)以截短拷贝(单独LTR)的形式存在。这些结果表明存在高水平的重组,导致截短元件的形成以及随后基因组中的DNA丢失。综合来看,我们的研究让我们得以一窥大麦育种计划中基因组重排和定向选择的副产物——动态微进化过程。