Wrobel G, Zhang Y, Krause H-J, Wolters N, Sommerhage F, Offenhäusser A, Ingebrandt S
Institute of Thin Films and Interfaces, Institute 2: Bioelectronics & Center of Nanoelectronic Systems for Information Technology, Forschungszentrum Juelich GmbH, D-52425 Juelich, Germany.
Biosens Bioelectron. 2007 Jan 15;22(6):1092-6. doi: 10.1016/j.bios.2006.03.023. Epub 2006 May 19.
Recording of extracellular signals with planar metal microelectrodes (ME) has already been presented more than 30 years ago. To date, microelectrode array (MEA) systems are able to measure extracellular signals at about 64 sites, simultaneously. This enables monitoring of electrical activity of many cells in a large area. The extracellular recording technique has become a widely used method for neurological, toxicological or pharmacological studies. It already proved its potential to supplement the classical methods in electrophysiology. The interpretation of the recorded signal shapes in order to extract electrophysiological meaningful data--however--is still under discussion. In this article, we analyse the preamplifier circuit for extracellular recording of cardiac myocyte signals. We use a circuit model for the cell-electrode contact including the first amplification stage. In test experiments, we observe different signal shapes, when different shunt resistors are introduced at the input of the preamplifier. According to the frequency spectra of the recordings, we evaluate the transfer function between the source signal and the readout signal. As a result of our studies, an optimum readout electronics for originally, preserved extracellular signal shapes is proposed. Our amplifier design will be most valuable, if the use of small microelectrodes with high input impedances for in vitro as well as for in vivo experiments is desired.
使用平面金属微电极(ME)记录细胞外信号早在30多年前就已出现。迄今为止,微电极阵列(MEA)系统能够同时在约64个位点测量细胞外信号。这使得能够监测大面积中许多细胞的电活动。细胞外记录技术已成为神经学、毒理学或药理学研究中广泛使用的方法。它已经证明了其补充电生理学经典方法的潜力。然而,为了提取具有电生理学意义的数据而对记录的信号形状进行解释仍在讨论中。在本文中,我们分析了用于心肌细胞信号细胞外记录的前置放大器电路。我们使用包括第一放大阶段的细胞 - 电极接触的电路模型。在测试实验中,当在前置放大器的输入端引入不同的分流电阻时,我们观察到不同的信号形状。根据记录的频谱,我们评估源信号与读出信号之间的传递函数。作为我们研究的结果,提出了一种用于原始保留细胞外信号形状的最佳读出电子设备。如果希望在体外以及体内实验中使用具有高输入阻抗的小型微电极,我们的放大器设计将具有最大价值。