Suppr超能文献

心身医学研究中现代缺失数据方法的使用入门。

A primer on the use of modern missing-data methods in psychosomatic medicine research.

作者信息

Enders Craig K

机构信息

Arizona State University, Department of Psychology, P.O. Box 871104, Tempe, Aarizona 85287-1104, USA.

出版信息

Psychosom Med. 2006 May-Jun;68(3):427-36. doi: 10.1097/01.psy.0000221275.75056.d8.

Abstract

This paper summarizes recent methodologic advances related to missing data and provides an overview of two "modern" analytic options, direct maximum likelihood (DML) estimation and multiple imputation (MI). The paper begins with an overview of missing data theory, as explicated by Rubin. Brief descriptions of traditional missing data techniques are given, and DML and MI are outlined in greater detail; special attention is given to an "inclusive" analytic strategy that incorporates auxiliary variables into the analytic model. The paper concludes with an illustrative analysis using an artificial quality of life data set. Computer code for all DML and MI analyses is provided, and the inclusion of auxiliary variables is illustrated.

摘要

本文总结了近期与缺失数据相关的方法学进展,并概述了两种“现代”分析方法,即直接最大似然(DML)估计和多重填补(MI)。本文开篇对鲁宾阐述的缺失数据理论进行了概述。给出了传统缺失数据技术的简要描述,并更详细地概述了DML和MI;特别关注了一种将辅助变量纳入分析模型的“包容性”分析策略。本文最后使用一个人工生活质量数据集进行了实例分析。提供了所有DML和MI分析的计算机代码,并举例说明了辅助变量的纳入情况。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验