Suppr超能文献

在考虑不等转换替代的情况下计算Ka和Ks。

Computing Ka and Ks with a consideration of unequal transitional substitutions.

作者信息

Zhang Zhang, Li Jun, Yu Jun

机构信息

Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100080, China.

出版信息

BMC Evol Biol. 2006 Jun 2;6:44. doi: 10.1186/1471-2148-6-44.

Abstract

BACKGROUND

Approximate methods for estimating nonsynonymous and synonymous substitution rates (Ka and Ks) among protein-coding sequences have adopted different mutation (substitution) models. In the past two decades, several methods have been proposed but they have not considered unequal transitional substitutions (between the two purines, A and G, or the two pyrimidines, T and C) that become apparent when sequences data to be compared are vast and significantly diverged.

RESULTS

We propose a new method (MYN), a modified version of the Yang-Nielsen algorithm (YN), for evolutionary analysis of protein-coding sequences in general. MYN adopts the Tamura-Nei Model that considers the difference among rates of transitional and transversional substitutions as well as factors in codon frequency bias. We evaluate the performance of MYN by comparing to other methods, especially to YN, and to show that MYN has minimal deviations when parameters vary within normal ranges defined by empirical data.

CONCLUSION

Our comparative results deriving from consistency analysis, computer simulations and authentic datasets, indicate that ignoring unequal transitional rates may lead to serious biases and that MYN performs well in most of the tested cases. These results also suggest that acquisitions of reliable synonymous and nonsynonymous substitution rates primarily depend on less biased estimates of transition/transversion rate ratio.

摘要

背景

用于估计蛋白质编码序列中非同义替换率和同义替换率(Ka和Ks)的近似方法采用了不同的突变(替换)模型。在过去二十年中,已经提出了几种方法,但当要比较的序列数据量巨大且差异显著时,它们没有考虑到明显的不等同转换替换(在两个嘌呤A和G之间,或两个嘧啶T和C之间)。

结果

我们提出了一种新方法(MYN),它是杨 - 尼尔森算法(YN)的改进版本,用于一般蛋白质编码序列的进化分析。MYN采用了塔穆拉 - 内模型,该模型考虑了转换和颠换替换率之间的差异以及密码子频率偏差等因素。我们通过与其他方法(特别是YN)进行比较来评估MYN的性能,并表明当参数在由经验数据定义的正常范围内变化时,MYN的偏差最小。

结论

我们从一致性分析、计算机模拟和真实数据集得出的比较结果表明,忽略不等同转换率可能会导致严重偏差,并且MYN在大多数测试案例中表现良好。这些结果还表明,获得可靠的同义替换率和非同义替换率主要取决于对转换/颠换率比的偏差较小的估计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2df0/1552089/99a3ae8eb28a/1471-2148-6-44-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验