Somorjai Gabor A, Contreras Anthony M, Montano Max, Rioux Robert M
Department of Chemistry, University of California, Berkeley, CA 94720, USA.
Proc Natl Acad Sci U S A. 2006 Jul 11;103(28):10577-83. doi: 10.1073/pnas.0507691103. Epub 2006 Jun 1.
The surface science of heterogeneous metal catalysis uses model systems ranging from single crystals to monodispersed nanoparticles in the 1-10 nm range. Molecular studies reveal that bond activation (C-H, H-H, C-C, CO) occurs at 300 K or below as the active metal sites simultaneously restructure. The strongly adsorbed molecules must be mobile to free up these sites for continued turnover of reaction. Oxide-metal interfaces are also active for catalytic turnover. Examples using C-H and CO activation are described to demonstrate these properties. Future directions include synthesis, characterization, and reaction studies with 2D and 3D monodispersed metal nanoclusters to obtain 100% selectivity in multipath reactions. Investigations of the unique structural, dynamic, and electronic properties of nanoparticles are likely to have major impact in surface technologies. The fields of heterogeneous, enzyme, and homogeneous catalysis are likely to merge for the benefit of all three.
多相金属催化的表面科学使用从单晶到1-10纳米范围内的单分散纳米颗粒等模型体系。分子研究表明,键活化(C-H、H-H、C-C、CO)在300 K或更低温度下发生,因为活性金属位点会同时发生重构。被强烈吸附的分子必须具有移动性,以便释放这些位点,使反应能够持续进行。氧化物-金属界面对于催化转化也具有活性。文中描述了使用C-H和CO活化的实例来证明这些特性。未来的方向包括使用二维和三维单分散金属纳米团簇进行合成、表征和反应研究,以在多路径反应中获得100%的选择性。对纳米颗粒独特的结构、动态和电子性质的研究可能会对表面技术产生重大影响。多相催化、酶催化和均相催化领域可能会融合,以造福于这三个领域。