Suppr超能文献

一种用于模拟转移进展的系统方法。

A systems approach to model metastatic progression.

作者信息

Taylor Barry S, Varambally Sooryanarayana, Chinnaiyan Arul M

机构信息

Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA.

出版信息

Cancer Res. 2006 Jun 1;66(11):5537-9. doi: 10.1158/0008-5472.CAN-06-0415.

Abstract

Proteomic profiling of human disease has seen much early activity with the accessibility of the newest generation of high-throughput platforms and technologies. Nevertheless, the nature of the dynamic physiologic milieu and high dimensionality of the data has complicated major diagnostic and prognostic breakthroughs. Our recent article in Cancer Cell delineates an integrative model for culling a molecular signature of metastatic progression in prostate cancer from proteomic and transcriptomic analyses and shows its facility as a predictor of prognosis. The study leveraged direct proteomic analysis of tumor tissue extracts, differential feature selection characterizing the proteomic alterations of prostate cancer subclasses, and integration with public and study-derived genomic data to construct a multiplex gene signature representing progression of indolent cancer to aggressive disease. This further predicted clinical outcome in a variety of solid tumors. This review describes the context of the work, the framework for the analysis itself, and a look forward to the promise of this systems approach to human disease.

摘要

随着新一代高通量平台和技术的普及,人类疾病的蛋白质组学分析已开展了许多早期活动。然而,动态生理环境的性质和数据的高维度使得重大诊断和预后突破变得复杂。我们最近发表在《癌细胞》杂志上的文章描述了一种综合模型,该模型可从蛋白质组学和转录组学分析中筛选出前列腺癌转移进展的分子特征,并展示了其作为预后预测指标的作用。该研究利用对肿瘤组织提取物的直接蛋白质组学分析、表征前列腺癌亚类蛋白质组改变的差异特征选择,以及与公共和研究衍生的基因组数据整合,构建了一个代表惰性癌向侵袭性疾病进展的多重基因特征。这进一步预测了多种实体瘤的临床结果。本综述描述了这项工作的背景、分析本身的框架,并展望了这种系统方法在人类疾病研究中的前景。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验