Suppr超能文献

热带假丝酵母木糖醇脱氢酶基因破坏突变体由D-木糖生产木糖醇

Production of xylitol from D-xylose by a xylitol dehydrogenase gene-disrupted mutant of Candida tropicalis.

作者信息

Ko Byoung Sam, Kim Jinmi, Kim Jung Hoe

机构信息

Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea.

出版信息

Appl Environ Microbiol. 2006 Jun;72(6):4207-13. doi: 10.1128/AEM.02699-05.

Abstract

Xylitol dehydrogenase (XDH) is one of the key enzymes in d-xylose metabolism, catalyzing the oxidation of xylitol to d-xylulose. Two copies of the XYL2 gene encoding XDH in the diploid yeast Candida tropicalis were sequentially disrupted using the Ura-blasting method. The XYL2-disrupted mutant, BSXDH-3, did not grow on a minimal medium containing d-xylose as a sole carbon source. An enzyme assay experiment indicated that BSXDH-3 lost apparently all XDH activity. Xylitol production by BSXDH-3 was evaluated using a xylitol fermentation medium with glucose as a cosubstrate. As glucose was found to be an insufficient cosubstrate, various carbon sources were screened for efficient cofactor regeneration, and glycerol was found to be the best cosubstrate. BSXDH-3 produced xylitol with a volumetric productivity of 3.23 g liter(-1) h(-1), a specific productivity of 0.76 g g(-1) h(-1), and a xylitol yield of 98%. This is the first report of gene disruption of C. tropicalis for enhancing the efficiency of xylitol production.

摘要

木糖醇脱氢酶(XDH)是D-木糖代谢中的关键酶之一,催化木糖醇氧化为D-木酮糖。采用尿嘧啶敲除方法依次破坏了二倍体热带假丝酵母中编码XDH的XYL2基因的两个拷贝。XYL2基因破坏突变体BSXDH-3在以D-木糖作为唯一碳源的基本培养基上无法生长。酶活性测定实验表明,BSXDH-3明显丧失了所有XDH活性。使用以葡萄糖作为共底物的木糖醇发酵培养基评估了BSXDH-3的木糖醇产量。由于发现葡萄糖作为共底物不足,因此筛选了各种碳源以实现高效的辅因子再生,结果发现甘油是最佳共底物。BSXDH-3生产木糖醇的体积产率为3.23 g·L⁻¹·h⁻¹,比产率为0.76 g·g⁻¹·h⁻¹,木糖醇得率为98%。这是关于通过破坏热带假丝酵母基因来提高木糖醇生产效率的首次报道。

相似文献

1
Production of xylitol from D-xylose by a xylitol dehydrogenase gene-disrupted mutant of Candida tropicalis.
Appl Environ Microbiol. 2006 Jun;72(6):4207-13. doi: 10.1128/AEM.02699-05.
2
Enhancement of xylitol production by attenuation of intracellular xylitol dehydrogenase activity in Candida tropicalis.
Biotechnol Lett. 2011 Jun;33(6):1209-13. doi: 10.1007/s10529-011-0558-z. Epub 2011 Feb 18.
3
Xylitol production is increased by expression of codon-optimized Neurospora crassa xylose reductase gene in Candida tropicalis.
Bioprocess Biosyst Eng. 2012 Jan;35(1-2):191-8. doi: 10.1007/s00449-011-0618-8. Epub 2011 Sep 16.
7
Enhancement of xylitol production in Candida tropicalis by co-expression of two genes involved in pentose phosphate pathway.
Bioprocess Biosyst Eng. 2012 Jan;35(1-2):199-204. doi: 10.1007/s00449-011-0641-9. Epub 2011 Oct 4.
9
Xylitol dehydrogenase from Candida tropicalis: molecular cloning of the gene and structural analysis of the protein.
Appl Microbiol Biotechnol. 2006 Dec;73(3):631-9. doi: 10.1007/s00253-006-0525-0. Epub 2006 Aug 2.

引用本文的文献

1
Development of engineered Candida tropicalis strain for efficient corncob-based xylitol-ethanol biorefinery.
Microb Cell Fact. 2023 Oct 6;22(1):201. doi: 10.1186/s12934-023-02190-3.
5
Engineering an oleaginous yeast Candida tropicalis SY005 for enhanced lipid production.
Appl Microbiol Biotechnol. 2020 Oct;104(19):8399-8411. doi: 10.1007/s00253-020-10830-6. Epub 2020 Aug 21.
6
Biovalorisation of crude glycerol and xylose into xylitol by oleaginous yeast Yarrowia lipolytica.
Microb Cell Fact. 2020 Jun 3;19(1):121. doi: 10.1186/s12934-020-01378-1.
9
Plasmid-Based CRISPR-Cas9 Gene Editing in Multiple Species.
mSphere. 2019 Mar 13;4(2):e00125-19. doi: 10.1128/mSphere.00125-19.

本文引用的文献

1
Production of xylitol from D-xylose by Candida tropicalis: optimization of production rate.
Biotechnol Bioeng. 1992 Nov;40(9):1085-91. doi: 10.1002/bit.260400912.
2
Cloning and expression of a NAD+-dependent xylitol dehydrogenase gene (xdhA) of Aspergillus oryzae.
J Biosci Bioeng. 2004;97(6):419-22. doi: 10.1016/S1389-1723(04)70229-7.
3
Antisense inhibition of xylitol dehydrogenase gene, xdh1 from Trichoderma reesei.
Lett Appl Microbiol. 2005;40(6):424-9. doi: 10.1111/j.1472-765X.2005.01685.x.
4
Xylitol production by a Pichia stipitis D-xylulokinase mutant.
Appl Microbiol Biotechnol. 2005 Jul;68(1):42-5. doi: 10.1007/s00253-004-1854-5. Epub 2005 Jan 6.
6
Candida tropicalis expresses two mitochondrial 2-enoyl thioester reductases that are able to form both homodimers and heterodimers.
J Biol Chem. 2003 Oct 17;278(42):41213-20. doi: 10.1074/jbc.M307664200. Epub 2003 Jul 30.
8
Novel enzymatic method for the production of xylitol from D-arabitol by Gluconobacter oxydans.
Biosci Biotechnol Biochem. 2002 Dec;66(12):2614-20. doi: 10.1271/bbb.66.2614.
9
Optimization of fed-batch fermentation for xylitol production by Candida tropicalis.
J Ind Microbiol Biotechnol. 2002 Jul;29(1):16-9. doi: 10.1038/sj.jim.7000257.
10
Controlled transient changes reveal differences in metabolite production in two Candida yeasts.
Appl Microbiol Biotechnol. 2002 Mar;58(4):511-6. doi: 10.1007/s00253-001-0921-4. Epub 2002 Feb 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验