Agile Biofoundry, Emeryville, CA, USA.
Sandia National Laboratories, Livermore, CA, USA.
Microb Cell Fact. 2023 Aug 3;22(1):145. doi: 10.1186/s12934-023-02126-x.
R. toruloides is an oleaginous yeast, with diverse metabolic capacities and high tolerance for inhibitory compounds abundant in plant biomass hydrolysates. While R. toruloides grows on several pentose sugars and alcohols, further engineering of the native pathway is required for efficient conversion of biomass-derived sugars to higher value bioproducts. A previous high-throughput study inferred that R. toruloides possesses a non-canonical L-arabinose and D-xylose metabolism proceeding through D-arabitol and D-ribulose. In this study, we present a combination of genetic and metabolite data that refine and extend that model. Chiral separations definitively illustrate that D-arabitol is the enantiomer that accumulates under pentose metabolism. Deletion of putative D-arabitol-2-dehydrogenase (RTO4_9990) results in > 75% conversion of D-xylose to D-arabitol, and is growth-complemented on pentoses by heterologous xylulose kinase expression. Deletion of putative D-ribulose kinase (RTO4_14368) arrests all growth on any pentose tested. Analysis of several pentose dehydrogenase mutants elucidates a complex pathway with multiple enzymes mediating multiple different reactions in differing combinations, from which we also inferred a putative L-ribulose utilization pathway. Our results suggest that we have identified enzymes responsible for the majority of pathway flux, with additional unknown enzymes providing accessory activity at multiple steps. Further biochemical characterization of the enzymes described here will enable a more complete and quantitative understanding of R. toruloides pentose metabolism. These findings add to a growing understanding of the diversity and complexity of microbial pentose metabolism.
罗氏酵母是一种产油酵母,具有多种代谢能力和对植物生物质水解物中丰富的抑制性化合物的高耐受性。虽然罗氏酵母可以生长在几种戊糖和醇上,但需要进一步对天然途径进行工程改造,才能有效地将生物质衍生的糖转化为更高价值的生物制品。之前的高通量研究推断,罗氏酵母具有一种非典型的 L-阿拉伯糖和 D-木糖代谢途径,通过 D-阿拉伯糖醇和 D-核酮糖进行。在这项研究中,我们结合遗传和代谢物数据,对该模型进行了细化和扩展。手性分离明确表明,D-阿拉伯糖醇是戊糖代谢中积累的对映异构体。推测的 D-阿拉伯糖醇-2-脱氢酶(RTO4_9990)缺失导致 D-木糖转化为 D-阿拉伯糖醇的转化率超过 75%,并且通过异源木酮糖激酶表达在戊糖上得到生长补偿。推测的 D-核酮糖激酶(RTO4_14368)缺失导致在测试的任何戊糖上都完全停止生长。对几种戊糖脱氢酶突变体的分析阐明了一个复杂的途径,其中多个酶以不同的组合介导多种不同的反应,从中我们还推断出一个假定的 L-核酮糖利用途径。我们的结果表明,我们已经确定了负责大多数途径通量的酶,而其他未知的酶在多个步骤中提供辅助活性。对这里描述的酶进行进一步的生化特征分析将使我们能够更全面和定量地了解罗氏酵母的戊糖代谢。这些发现增加了对微生物戊糖代谢多样性和复杂性的认识。