Suppr超能文献

古气候:最初的二十亿年

Palaeoclimates: the first two billion years.

作者信息

Kasting James F, Ono Shuhei

机构信息

Penn State University, Department of Geosciences, University Park, PA 16802, USA.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2006 Jun 29;361(1470):917-29. doi: 10.1098/rstb.2006.1839.

Abstract

Earth's climate during the Archaean remains highly uncertain, as the relevant geologic evidence is sparse and occasionally contradictory. Oxygen isotopes in cherts suggest that between 3.5 and 3.2 Gyr ago (Ga) the Archaean climate was hot (55-85 degrees C); however, the fact that these cherts have experienced only a modest amount of weathering suggests that the climate was temperate, as today. The presence of diamictites in the Pongola Supergroup and the Witwatersrand Basin of South Africa suggests that by 2.9 Ga the climate was glacial. The Late Archaean was relatively warm; then glaciation (possibly of global extent) reappeared in the Early Palaeoproterozoic, around 2.3-2.4 Ga. Fitting these climatic constraints with a model requires high concentrations of atmospheric CO2 or CH4, or both. Solar luminosity was 20-25% lower than today, so elevated greenhouse gas concentrations were needed just to keep the mean surface temperature above freezing. A rise in O2 at approximately 2.4 Ga, and a concomitant decrease in CH4, provides a natural explanation for the Palaeoproterozoic glaciations. The Mid-Archaean glaciations may have been caused by a drawdown in H2 and CH4 caused by the origin of bacterial sulphate reduction. More work is needed to test this latter hypothesis.

摘要

太古宙时期地球的气候仍然极不确定,因为相关地质证据稀少且偶尔相互矛盾。燧石中的氧同位素表明,在35亿年至32亿年前,太古宙气候炎热(55 - 85摄氏度);然而,这些燧石仅经历了适度程度的风化这一事实表明,当时气候如现今一样温和。南非庞戈拉超群和威特沃特斯兰德盆地中杂砾岩的存在表明,到29亿年前气候已处于冰川期。太古宙晚期相对温暖;然后在古元古代早期,约23亿至24亿年前,冰川作用(可能是全球范围的)再次出现。要将这些气候限制条件与一个模型相匹配,需要大气中高浓度的二氧化碳或甲烷,或两者皆有。太阳光度比现今低20% - 25%,因此需要提高温室气体浓度才能使地表平均温度保持在冰点以上。在约24亿年前氧气增加,同时甲烷减少,这为古元古代冰川作用提供了一个自然的解释。太古宙中期的冰川作用可能是由细菌硫酸盐还原作用的起源导致氢气和甲烷减少所引起的。需要开展更多工作来检验后一个假设。

相似文献

1
Palaeoclimates: the first two billion years.古气候:最初的二十亿年
Philos Trans R Soc Lond B Biol Sci. 2006 Jun 29;361(1470):917-29. doi: 10.1098/rstb.2006.1839.
8
A 200-million-year delay in permanent atmospheric oxygenation.大气氧合作用的 2 亿年延迟。
Nature. 2021 Apr;592(7853):232-236. doi: 10.1038/s41586-021-03393-7. Epub 2021 Mar 29.

引用本文的文献

5
Biochemical control systems for small molecule damage in plants.植物中小分子损伤的生化控制系统。
Plant Signal Behav. 2018;13(5):e1477906. doi: 10.1080/15592324.2018.1477906. Epub 2018 Jun 26.
7
Rapid oxygenation of Earth's atmosphere 2.33 billion years ago.23.3 亿年前地球大气的快速增氧。
Sci Adv. 2016 May 13;2(5):e1600134. doi: 10.1126/sciadv.1600134. eCollection 2016 May.
9
2-Hydroxy Acids in Plant Metabolism.植物代谢中的2-羟基酸
Arabidopsis Book. 2015 Sep 4;13:e0182. doi: 10.1199/tab.0182. eCollection 2015.
10
Photosynthesis in hydrogen-dominated atmospheres.氢主导大气中的光合作用。
Life (Basel). 2014 Nov 18;4(4):716-44. doi: 10.3390/life4040716.

本文引用的文献

4
Cell evolution and Earth history: stasis and revolution.细胞进化与地球历史:静态与变革
Philos Trans R Soc Lond B Biol Sci. 2006 Jun 29;361(1470):969-1006. doi: 10.1098/rstb.2006.1842.
5
The carbon cycle and associated redox processes through time.碳循环及相关氧化还原过程随时间的变化。
Philos Trans R Soc Lond B Biol Sci. 2006 Jun 29;361(1470):931-50. doi: 10.1098/rstb.2006.1840.
6
The oxygenation of the atmosphere and oceans.大气和海洋的氧合作用。
Philos Trans R Soc Lond B Biol Sci. 2006 Jun 29;361(1470):903-15. doi: 10.1098/rstb.2006.1838.
8
A hydrogen-rich early Earth atmosphere.早期地球富含氢气的大气层。
Science. 2005 May 13;308(5724):1014-7. doi: 10.1126/science.1106983. Epub 2005 Apr 7.
10
Dating the rise of atmospheric oxygen.确定大气中氧气的上升时间。
Nature. 2004 Jan 8;427(6970):117-20. doi: 10.1038/nature02260.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验