Catling D C, Zahnle K J, McKay C
Mail Stop 245-3, Space Science Division, NASA Ames Research Center, Moffett Field, CA 94035, USA.
Science. 2001 Aug 3;293(5531):839-43. doi: 10.1126/science.1061976.
The low O2 content of the Archean atmosphere implies that methane should have been present at levels approximately 10(2) to 10(3) parts per million volume (ppmv) (compared with 1.7 ppmv today) given a plausible biogenic source. CH4 is favored as the greenhouse gas that countered the lower luminosity of the early Sun. But abundant CH4 implies that hydrogen escapes to space (upward arrow space) orders of magnitude faster than today. Such reductant loss oxidizes the Earth. Photosynthesis splits water into O2 and H, and methanogenesis transfers the H into CH4. Hydrogen escape after CH4 photolysis, therefore, causes a net gain of oxygen [CO2 + 2H2O --> CH4 + 2O2 --> CO2 + O2 + 4H(upward arrow space)]. Expected irreversible oxidation (approximately 10(12) to 10(13) moles oxygen per year) may help explain how Earth's surface environment became irreversibly oxidized.
太古宙大气中低氧含量意味着,在存在合理生物源的情况下,甲烷含量应约为百万分之10²至10³体积比(相比之下,如今为1.7 ppmv)。甲烷被认为是抵消早期太阳较低光度的温室气体。但大量甲烷意味着氢逃逸到太空(向上箭头指向太空)的速度比现在快几个数量级。这种还原剂的损失会使地球氧化。光合作用将水分解为氧气和氢,而甲烷生成将氢转化为甲烷。因此,甲烷光解后氢的逃逸导致氧气净增加[二氧化碳 + 2水→甲烷 + 2氧气→二氧化碳 + 氧气 + 4氢(向上箭头指向太空)]。预期的不可逆氧化(约每年10¹²至10¹³摩尔氧气)可能有助于解释地球表面环境如何发生不可逆氧化。