Cavalier-Smith Thomas
University of Oxford, Department of Zoology, South Parks Road, Oxford OX1 3PS, UK.
Philos Trans R Soc Lond B Biol Sci. 2006 Jun 29;361(1470):969-1006. doi: 10.1098/rstb.2006.1842.
This synthesis has three main parts. The first discusses the overall tree of life and nature of the last common ancestor (cenancestor). I emphasize key steps in cellular evolution important for ordering and timing the major evolutionary innovations in the history of the biosphere, explaining especially the origins of the eukaryote cell and of bacterial flagella and cell envelope novelties. Second, I map the tree onto the fossil record and discuss dates of key events and their biogeochemical impact. Finally, I present a broad synthesis, discussing evidence for a three-phase history of life. The first phase began perhaps ca 3.5 Gyr ago, when the origin of cells and anoxic photosynthesis generated the arguably most primitive prokaryote phylum, Chlorobacteria (= Chloroflexi), the first negibacteria with cells bounded by two acyl ester phospholipid membranes. After this 'chlorobacterial age' of benthic anaerobic evolution protected from UV radiation by mineral grains, two momentous quantum evolutionary episodes of cellular innovation and microbial radiation dramatically transformed the Earth's surface: the glycobacterial revolution initiated an oxygenic 'age of cyanobacteria' and, as the ozone layer grew, the rise of plankton; immensely later, probably as recently as ca 0.9 Gyr ago, the neomuran revolution ushered in the 'age of eukaryotes', Archaebacteria (arguably the youngest bacterial phylum), and morphological complexity. Diversification of glycobacteria ca 2.8 Gyr ago, predominantly inhabiting stratified benthic mats, I suggest caused serial depletion of 13C by ribulose 1,5-bis-phosphate caboxylase/oxygenase (Rubisco) to yield ultralight late Archaean organic carbon formerly attributed to methanogenesis plus methanotrophy. The late origin of archaebacterial methanogenesis ca 720 Myr ago perhaps triggered snowball Earth episodes by slight global warming increasing weathering and reducing CO2 levels, to yield runaway cooling; the origin of anaerobic methane oxidation ca 570 Myr ago reduced methane flux at source, stabilizing Phanerozoic climates. I argue that the major cellular innovations exhibit a pattern of quantum evolution followed by very rapid radiation and then substantial stasis, as described by Simpson. They yielded organisms that are a mosaic of extremely conservative and radically novel features, as characterized by De Beer's phrase 'mosaic evolution'. Evolution is not evenly paced and there are no real molecular clocks.
这种综合论述有三个主要部分。第一部分讨论了生命的总体树状图以及最后共同祖先(总祖先)的性质。我着重阐述了细胞进化中的关键步骤,这些步骤对于梳理和确定生物圈历史上主要进化创新的顺序和时间至关重要,特别解释了真核细胞、细菌鞭毛以及细胞包膜新特征的起源。第二部分,我将这棵树状图与化石记录相对应,并讨论关键事件的日期及其生物地球化学影响。最后,我进行了一个广泛的综合论述,探讨了生命三阶段历史的证据。第一阶段大约始于35亿年前,当时细胞的起源和无氧光合作用产生了可以说是最原始的原核生物门——绿菌门(=绿弯菌门),这是第一批具有由两层酰基酯磷脂膜界定的细胞的负细菌。在这个由矿物颗粒保护免受紫外线辐射的底栖厌氧进化的“绿菌时代”之后,细胞创新和微生物辐射的两个重大量子进化事件极大地改变了地球表面:糖细菌革命开启了一个有氧的“蓝细菌时代”,并且随着臭氧层的形成,浮游生物兴起;在很久之后,可能近至9亿年前,新壁总域革命迎来了“真核生物时代”、古细菌(可以说是最年轻的细菌门)以及形态复杂性。我认为,大约在28亿年前主要栖息在分层底栖垫中的糖细菌的多样化,导致了核酮糖-1,5-二磷酸羧化酶/加氧酶(Rubisco)对13C的连续消耗,从而产生了以前归因于甲烷生成和甲烷营养作用的超轻晚太古代有机碳。大约在7.2亿年前古细菌甲烷生成的晚期起源,可能通过轻微的全球变暖增加风化作用并降低二氧化碳水平引发了雪球地球事件,从而导致失控的冷却;大约在5.7亿年前厌氧甲烷氧化的起源减少了源头的甲烷通量,稳定了显生宙的气候。我认为,主要的细胞创新呈现出一种量子进化模式,随后是非常快速的辐射,然后是相当长时间的停滞,正如辛普森所描述的那样。它们产生的生物体是极端保守和全新特征的镶嵌体,用德比尔的话来说就是“镶嵌进化”。进化的节奏并不均匀,也不存在真正的分子钟。