Gribaldo Simonetta, Brochier-Armanet Celine
Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extremophiles, 25 rue du Dr Roux, 75724 Paris Cedex 15, France.
Philos Trans R Soc Lond B Biol Sci. 2006 Jun 29;361(1470):1007-22. doi: 10.1098/rstb.2006.1841.
Environmental surveys indicate that the Archaea are diverse and abundant not only in extreme environments, but also in soil, oceans and freshwater, where they may fulfil a key role in the biogeochemical cycles of the planet. Archaea display unique capacities, such as methanogenesis and survival at temperatures higher than 90 degrees C, that make them crucial for understanding the nature of the biota of early Earth. Molecular, genomics and phylogenetics data strengthen Woese's definition of Archaea as a third domain of life in addition to Bacteria and Eukarya. Phylogenomics analyses of the components of different molecular systems are highlighting a core of mainly vertically inherited genes in Archaea. This allows recovering a globally well-resolved picture of archaeal evolution, as opposed to what is observed for Bacteria and Eukarya. This may be due to the fact that no rapid divergence occurred at the emergence of present-day archaeal lineages. This phylogeny supports a hyperthermophilic and non-methanogenic ancestor to present-day archaeal lineages, and a profound divergence between two major phyla, the Crenarchaeota and the Euryarchaeota, that may not have an equivalent in the other two domains of life. Nanoarchaea may not represent a third and ancestral archaeal phylum, but a fast-evolving euryarchaeal lineage. Methanogenesis seems to have appeared only once and early in the evolution of Euryarchaeota. Filling up this picture of archaeal evolution by adding presently uncultivated species, and placing it back in geological time remain two essential goals for the future.
环境调查表明,古菌不仅在极端环境中种类繁多、数量丰富,在土壤、海洋和淡水中也是如此,它们可能在地球的生物地球化学循环中发挥关键作用。古菌具有独特的能力,如甲烷生成以及在高于90摄氏度的温度下生存,这使得它们对于理解早期地球生物群的本质至关重要。分子、基因组学和系统发育学数据强化了沃斯对古菌的定义,即古菌是除细菌和真核生物之外的第三个生命域。对不同分子系统组成部分的系统发育基因组学分析突出了古菌中主要通过垂直遗传的核心基因。这使得能够重建一幅全球范围内分辨率良好的古菌进化图景,这与细菌和真核生物的情况不同。这可能是由于当今古菌谱系出现时没有发生快速分化。这种系统发育支持现今古菌谱系有一个嗜热且非产甲烷的祖先,以及泉古菌门和广古菌门这两个主要菌门之间存在深刻分化,而这在生命的其他两个域中可能并不存在。纳古菌可能并不代表第三个且是古老的古菌门,而是一个快速进化的广古菌谱系。甲烷生成似乎仅在广古菌门进化早期出现过一次。通过增加目前尚未培养的物种来完善这幅古菌进化图景,并将其置于地质时间背景下,仍然是未来的两个重要目标。