Moran Anan, Bar-Gad Izhar, Bergman Hagai, Israel Zvi
Gonda Multidisciplinary Brain Research Center and Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel.
Mov Disord. 2006 Sep;21(9):1425-31. doi: 10.1002/mds.20995.
The subthalamic nucleus (STN) is a major target for treatment of advanced Parkinson's disease patients undergoing deep brain stimulation surgery. Microelectrode recording (MER) is used in many cases to identify the target nucleus. A real-time procedure for identifying the entry and exit points of the STN would improve the outcome of this targeting procedure. We used the normalized root mean square (NRMS) of a short (5 seconds) MER sampled signal and the estimated anatomical distance to target (EDT) as the basis for this procedure. Electrode tip location was defined intraoperatively by an expert neurophysiologist to be before, within, or after the STN. Data from 46 trajectories of 27 patients were used to calculate the Bayesian posterior probability of being in each of these locations, given RMS-EDT pair values. We tested our predictions on each trajectory using a bootstrapping technique, with the rest of the trajectories serving as a training set and found the error in predicting the STN entry to be (mean +/- SD) 0.18 +/- 0.84, and 0.50 +/- 0.59 mm for STN exit point, which yields a 0.30 +/- 0.28 mm deviation from the expert's target center. The simplicity and computational ease of RMS calculation, its spike sorting-independent nature and tolerance to electrode parameters of this Bayesian predictor, can lead directly to the development of a fully automated intraoperative physiological procedure for the refinement of imaging estimates of STN borders.
丘脑底核(STN)是接受深部脑刺激手术的晚期帕金森病患者的主要治疗靶点。在许多情况下,会使用微电极记录(MER)来识别目标核团。一种用于识别STN进出点的实时程序将改善这种靶点定位程序的效果。我们使用短(5秒)MER采样信号的归一化均方根(NRMS)和估计的到靶点的解剖距离(EDT)作为该程序的基础。术中由专业神经生理学家将电极尖端位置定义为在STN之前、之内或之后。使用来自27名患者的46条轨迹的数据,根据RMS-EDT对值计算处于这些位置中每个位置的贝叶斯后验概率。我们使用自举技术在每条轨迹上测试我们的预测,其余轨迹用作训练集,发现预测STN进入点的误差为(均值±标准差)0.18±0.84,STN退出点的误差为0.50±0.59毫米,这导致与专家目标中心的偏差为0.30±0.28毫米。RMS计算的简单性和计算便捷性、其与尖峰分类无关的性质以及对该贝叶斯预测器电极参数的耐受性,可直接促成一种用于完善STN边界成像估计的全自动术中生理程序的开发。