Berteau Olivier, Guillot Alain, Benjdia Alhosna, Rabot Sylvie
Unité d'Ecologie et Physiologie du Système Digestif, Jonas, France.
J Biol Chem. 2006 Aug 11;281(32):22464-70. doi: 10.1074/jbc.M602504200. Epub 2006 Jun 9.
Sulfatases are a highly conserved family of enzymes found in all three domains of life. To be active, sulfatases undergo a unique post-translational modification leading to the conversion of either a critical cysteine ("Cys-type" sulfatases) or a serine ("Ser-type" sulfatases) into a Calpha-formylglycine (FGly). This conversion depends on a strictly conserved sequence called "sulfatase signature" (C/S)XPXR. In a search for new enzymes from the human microbiota, we identified the first sulfatase from Firmicutes. Matrix-assisted laser desorption ionization time-of-flight analysis revealed that this enzyme undergoes conversion of its critical cysteine residue into FGly, even though it has a modified (C/S)XAXR sulfatase signature. Examination of the bacterial and archaeal genomes sequenced to date has identified many genes bearing this new motif, suggesting that the definition of the sulfatase signature should be expanded. Furthermore, we have also identified a new Cys-type sulfatase-maturating enzyme that catalyzes the conversion of cysteine into FGly, in anaerobic conditions, whereas the only enzyme reported so far to be able to catalyze this reaction is oxygen-dependent. The new enzyme belongs to the radical S-adenosyl-l-methionine enzyme superfamily and is related to the Ser-type sulfatase-maturating enzymes. This finding leads to the definition of a new enzyme family of sulfatase-maturating enzymes that we have named anSME (anaerobic sulfatase-maturating enzyme). This family includes enzymes able to maturate Cys-type as well as Ser-type sulfatases in anaerobic conditions. In conclusion, our results lead to a new scheme for the biochemistry of sulfatases maturation and suggest that the number of genes and bacterial species encoding sulfatase enzymes is currently underestimated.
硫酸酯酶是在生命的所有三个域中都能找到的一个高度保守的酶家族。为了具有活性,硫酸酯酶会经历一种独特的翻译后修饰,导致关键的半胱氨酸(“Cys型”硫酸酯酶)或丝氨酸(“Ser型”硫酸酯酶)转化为α-甲酰甘氨酸(FGly)。这种转化依赖于一个严格保守的序列,称为“硫酸酯酶特征序列”(C/S)XPXR。在从人类微生物群中寻找新酶的过程中,我们鉴定出了来自厚壁菌门的首个硫酸酯酶。基质辅助激光解吸电离飞行时间分析表明,尽管该酶具有修饰后的(C/S)XAXR硫酸酯酶特征序列,但其关键的半胱氨酸残基仍会转化为FGly。对迄今已测序的细菌和古细菌基因组的研究发现了许多带有这个新基序的基因,这表明硫酸酯酶特征序列的定义应该扩大。此外,我们还鉴定出了一种新的Cys型硫酸酯酶成熟酶,它在厌氧条件下催化半胱氨酸转化为FGly,而迄今为止报道的唯一能够催化此反应的酶是依赖氧气的。这种新酶属于自由基S-腺苷-L-甲硫氨酸酶超家族,并且与Ser型硫酸酯酶成熟酶相关。这一发现导致了一个新的硫酸酯酶成熟酶家族的定义,我们将其命名为anSME(厌氧硫酸酯酶成熟酶)。这个家族包括能够在厌氧条件下使Cys型和Ser型硫酸酯酶成熟的酶。总之,我们的研究结果产生了一种硫酸酯酶成熟生物化学的新方案,并表明目前对编码硫酸酯酶的基因和细菌种类数量的估计不足。