Suppr超能文献

将混合文本匹配算法应用于自动化生物医学词汇映射。

Applying hybrid algorithms for text matching to automated biomedical vocabulary mapping.

作者信息

Nachimuthu Senthil K, Lau Lee Min

机构信息

Department of Medical Informatics, University of Utah, Salt Lake City, Utah, USA.

出版信息

AMIA Annu Symp Proc. 2005;2005:555-9.

Abstract

Several biomedical vocabularies are often used by clinical applications due to their different domain(s) of coverage, intended use, etc. Mapping them to a reference terminology is essential for inter-systems interoperability. Manual vocabulary mapping is labor-intensive and allows room for inconsistencies. It requires manual searching for synonyms, abbreviation expansions, variations, etc., placing additional burden on the mappers. Furthermore, local vocabularies may use non-standard words and abbreviations, posing additional problems. However, much of this process can be automated to provide decision-support, allowing mappers to focus on steps that absolutely need their expertise. We developed hybrid algorithms comprising of rules, permutations, sequence alignment and cost algorithms that utilize the UMLS SPECIALIST Lexicon, a custom knowledgebase and a search engine to automatically find probable matches, allowing mappers to select the best match from this list. We discuss the techniques, results from assisting to map a local codeset, and scope for generalizability.

摘要

由于临床应用覆盖的不同领域、预期用途等因素,几种生物医学词汇表经常被使用。将它们映射到一个参考术语表对于系统间的互操作性至关重要。手动词汇映射劳动强度大,且存在不一致的空间。它需要手动搜索同义词、缩写扩展、变体等,给映射人员带来额外负担。此外,本地词汇表可能使用非标准的单词和缩写,带来更多问题。然而,这个过程的大部分可以自动化以提供决策支持,使映射人员能够专注于绝对需要其专业知识的步骤。我们开发了由规则、排列、序列比对和成本算法组成的混合算法,这些算法利用统一医学语言系统(UMLS)专家词典、一个自定义知识库和一个搜索引擎来自动找到可能的匹配项,使映射人员能够从该列表中选择最佳匹配项。我们讨论了这些技术、协助映射本地代码集的结果以及可推广性的范围。

相似文献

8
A system for automated lexical mapping.一种自动词汇映射系统。
J Am Med Inform Assoc. 2006 May-Jun;13(3):334-43. doi: 10.1197/jamia.M1823. Epub 2006 Feb 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验