Tsui Fu-Chiang, Espino Jeremy U, Weng Yan, Choudary Arvinder, Su Hoah-Der, Wagner Michael M
RODS Laboratory, Center of Biomedical Informatics, University of Pittsburgh, PA 15219, USA.
AMIA Annu Symp Proc. 2005;2005:739-43.
The National Retail Data Monitor (NRDM) has monitored over-the-counter (OTC) medication sales in the United States since December 2002. The NRDM collects data from over 18,600 retail stores and processes over 0.6 million sales records per day. This paper describes key architectural features that we have found necessary for a data utility component in a national biosurveillance system. These elements include event-driven architecture to provide analyses of data in near real time, multiple levels of caching to improve query response time, high availability through the use of clustered servers, scalable data storage through the use of storage area networks and a web-service function for interoperation with affiliated systems. The methods and architectural principles are relevant to the design of any production data utility for public health surveillance-systems that collect data from multiple sources in near real time for use by analytic programs and user interfaces that have substantial requirements for time-series data aggregated in multiple dimensions.
自2002年12月以来,美国国家零售数据监测系统(NRDM)一直在监测非处方(OTC)药品销售情况。NRDM从18,600多家零售店收集数据,每天处理超过60万条销售记录。本文描述了我们发现的国家生物监测系统中数据实用组件所需的关键架构特征。这些要素包括事件驱动架构,以近乎实时地提供数据分析;多级缓存,以提高查询响应时间;通过使用集群服务器实现高可用性;通过使用存储区域网络实现可扩展数据存储;以及用于与附属系统进行互操作的网络服务功能。这些方法和架构原则与任何用于公共卫生监测的生产数据实用工具的设计相关,这些系统近乎实时地从多个来源收集数据,以供分析程序和对多维聚合时间序列数据有大量需求的用户界面使用。