Tang Yongquan, Turner Martin J, Baker A Barry
Department of Anaesthetics, University of Sydney, Royal Prince Alfred Hospital, Missenden Road, Camperdown, NSW 2050, Sydney, Australia.
J Clin Monit Comput. 2006 Apr;20(2):75-9. doi: 10.1007/s10877-005-9005-9. Epub 2006 Jun 8.
This study evaluates a method for calibrating mainstream CO(2) analysers in which CO(2) partial pressure (P (CO2)) is calculated as a function of the outputs of CO(2) and O(2) analysers.
Three mass flow controllers were used to generate 25 different reference mixtures of O(2), N(2) and CO(2). Reference gas mixtures were combinations of P (CO2) = 2, 4, 6, 8, 10 kPa and O(2) partial pressure (P (O2)) = 10, 20, 40, 60, 80 kPa (balance N(2)). CO(2) and O(2) analyser data were fitted by a calibration equation which took into account the effects of oxygen partial pressure and nonlinearity of the CO(2) analyser. The calibration coefficients were tested in a separate validation data set with a variety of combinations of CO(2) and O(2).
Our new calibration method yields a standard deviation of CO(2) measurement error that is significantly lower than a CO(2)-only calibration method in the validation data set (0.54% versus 2.72%, P < 0.05). P (CO2) measurement errors produced by the single gas calibration equation are significantly correlated with P (O2) in both the calibration (R = -0.9906, P < 0.05) and validation data sets (R = -0.9642, P < 0.05), but the errors given by our new calibration equation are independent of P (O2) (R = -0.0364, NS, and R = -0.0305, NS, for calibration and validation data sets respectively). Calibration with only CO(2) cannot eliminate the error related to the collision broadening effect of O(2), which in our CO(2) analyser is approximately a 1% underestimation of P (CO2) for every 10 kPa (75 mmHg) increase in P (O2).
This study shows that non-dispersive infrared CO(2) analyser readings can be substantially affected by background oxygen. This effect can be corrected for by calibrating the CO(2) analyser with gases containing known proportions of both CO(2) and O(2).
本研究评估一种校准主流二氧化碳分析仪的方法,该方法根据二氧化碳和氧气分析仪的输出计算二氧化碳分压(P(CO₂))。
使用三个质量流量控制器生成25种不同的氧气、氮气和二氧化碳参考混合物。参考气体混合物是P(CO₂)=2、4、6、8、10 kPa与氧气分压(P(O₂))=10、20、40、60、80 kPa(其余为氮气)的组合。通过一个校准方程对二氧化碳和氧气分析仪的数据进行拟合,该校准方程考虑了氧气分压和二氧化碳分析仪非线性的影响。在校准系数在一个单独的验证数据集中进行测试,该数据集包含各种二氧化碳和氧气的组合。
我们的新校准方法在验证数据集中产生的二氧化碳测量误差标准差显著低于仅使用二氧化碳校准的方法(0.54%对2.72%,P<0.05)。单气体校准方程产生的P(CO₂)测量误差在校准数据集(R=-0.9906,P<0.05)和验证数据集中(R=-0.9642,P<0.05)均与P(O₂)显著相关,但我们新校准方程给出的误差与P(O₂)无关(校准和验证数据集分别为R=-0.0364,无统计学意义,和R=-0.0305,无统计学意义)。仅用二氧化碳校准无法消除与氧气碰撞加宽效应相关的误差,在我们的二氧化碳分析仪中,每10 kPa(75 mmHg)的P(O₂)增加,P(CO₂)大约被低估1%。
本研究表明,非分散红外二氧化碳分析仪读数会受到背景氧气的显著影响。通过使用含有已知比例二氧化碳和氧气的气体校准二氧化碳分析仪,可以校正这种影响。