Chater Nick, Manning Christopher D
Department of Psychology, University College London, Gower Street, London, WC1E 6BT, UK.
Trends Cogn Sci. 2006 Jul;10(7):335-44. doi: 10.1016/j.tics.2006.05.006. Epub 2006 Jun 19.
Probabilistic methods are providing new explanatory approaches to fundamental cognitive science questions of how humans structure, process and acquire language. This review examines probabilistic models defined over traditional symbolic structures. Language comprehension and production involve probabilistic inference in such models; and acquisition involves choosing the best model, given innate constraints and linguistic and other input. Probabilistic models can account for the learning and processing of language, while maintaining the sophistication of symbolic models. A recent burgeoning of theoretical developments and online corpus creation has enabled large models to be tested, revealing probabilistic constraints in processing, undermining acquisition arguments based on a perceived poverty of the stimulus, and suggesting fruitful links with probabilistic theories of categorization and ambiguity resolution in perception.
概率方法正在为人类如何构建、处理和习得语言等基础认知科学问题提供新的解释方法。本综述考察了在传统符号结构上定义的概率模型。语言理解和生成在这类模型中涉及概率推理;而语言习得则涉及在先天限制以及语言和其他输入的条件下选择最佳模型。概率模型能够解释语言的学习和处理,同时保持符号模型的复杂性。最近理论发展和在线语料库创建的蓬勃发展使得大型模型能够得到测试,揭示了处理过程中的概率限制,削弱了基于刺激匮乏观念的习得论点,并暗示了与感知中的分类和歧义消解概率理论的有益联系。