Department of Electrical Engineering, National Institute of Technology, Calicut, India.
J Med Syst. 2010 Apr;34(2):195-212. doi: 10.1007/s10916-008-9231-z.
The EEG (Electroencephalogram) signal indicates the electrical activity of the brain. They are highly random in nature and may contain useful information about the brain state. However, it is very difficult to get useful information from these signals directly in the time domain just by observing them. They are basically non-linear and nonstationary in nature. Hence, important features can be extracted for the diagnosis of different diseases using advanced signal processing techniques. In this paper the effect of different events on the EEG signal, and different signal processing methods used to extract the hidden information from the signal are discussed in detail. Linear, Frequency domain, time - frequency and non-linear techniques like correlation dimension (CD), largest Lyapunov exponent (LLE), Hurst exponent (H), different entropies, fractal dimension(FD), Higher Order Spectra (HOS), phase space plots and recurrence plots are discussed in detail using a typical normal EEG signal.
脑电图(EEG)信号表示大脑的电活动。它们本质上是高度随机的,可能包含有关大脑状态的有用信息。然而,仅通过观察它们,很难直接从这些信号的时域中获得有用的信息。它们本质上是非线性和非平稳的。因此,使用先进的信号处理技术,可以提取重要特征以用于不同疾病的诊断。本文详细讨论了不同事件对 EEG 信号的影响,以及用于从信号中提取隐藏信息的不同信号处理方法。使用典型的正常脑电图信号详细讨论了线性、频域、时频和非线性技术,如关联维数(CD)、最大 Lyapunov 指数(LLE)、Hurst 指数(H)、不同的熵、分形维数(FD)、高阶谱(HOS)、相空间图和递归图。