Rancillac Armelle, Rossier Jean, Guille Manon, Tong Xin-Kang, Geoffroy Hélène, Amatore Christian, Arbault Stéphane, Hamel Edith, Cauli Bruno
Laboratoire de Neurobiologie et Diversité Cellulaire, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7637, Ecole Supérieure de Physique et de Chimie Industrielles de la ville de Paris, France.
J Neurosci. 2006 Jun 28;26(26):6997-7006. doi: 10.1523/JNEUROSCI.5515-05.2006.
The tight coupling between increased neuronal activity and local cerebral blood flow, known as functional hyperemia, is essential for normal brain function. However, its cellular and molecular mechanisms remain poorly understood. In the cerebellum, functional hyperemia depends almost exclusively on nitric oxide (NO). Here, we investigated the role of different neuronal populations in the control of microvascular tone by in situ amperometric detection of NO and infrared videomicroscopy of microvessel movements in rat cerebellar slices. Bath application of an NO donor induced both NO flux and vasodilation. Surprisingly, endogenous release of NO elicited by glutamate was accompanied by vasoconstriction that was abolished by inhibition of Ca2+-phopholipase A2 and impaired by cyclooxygenase and thromboxane synthase inhibition and endothelin A receptor blockade, indicating a role for prostanoids and endothelin 1 in this response. Interestingly, direct stimulation of single endothelin 1-immunopositive Purkinje cells elicited constriction of neighboring microvessels. In contrast to glutamate, NMDA induced both NO flux and vasodilation that were abolished by treatment with a NO synthase inhibitor or with tetrodotoxin. These findings indicate that NO derived from neuronal origin is necessary for vasodilation induced by NMDA and, furthermore, that NO-producing interneurons mediate this vasomotor response. Correspondingly, electrophysiological stimulation of single nitrergic stellate cells by patch clamp was sufficient to release NO and dilate both intraparenchymal and upstream pial microvessels. These findings demonstrate that cerebellar stellate and Purkinje cells dilate and constrict, respectively, neighboring microvessels and highlight distinct roles for different neurons in neurovascular coupling.
神经元活动增加与局部脑血流量之间的紧密耦合,即所谓的功能性充血,对于正常脑功能至关重要。然而,其细胞和分子机制仍知之甚少。在小脑中,功能性充血几乎完全依赖于一氧化氮(NO)。在此,我们通过原位安培法检测NO以及大鼠小脑切片中微血管运动的红外视频显微镜检查,研究了不同神经元群体在控制微血管张力中的作用。浴用NO供体可诱导NO通量和血管舒张。令人惊讶的是,谷氨酸引发的内源性NO释放伴随着血管收缩,而这种收缩可通过抑制Ca2 + -磷脂酶A2而消除,并因环氧合酶和血栓素合酶抑制以及内皮素A受体阻断而受损,这表明前列腺素和内皮素1在该反应中起作用。有趣的是,直接刺激单个内皮素1免疫阳性的浦肯野细胞会引起相邻微血管的收缩。与谷氨酸不同,NMDA可诱导NO通量和血管舒张,而用NO合酶抑制剂或河豚毒素处理可消除这种现象。这些发现表明,源自神经元的NO对于NMDA诱导的血管舒张是必需的,此外,产生NO的中间神经元介导了这种血管运动反应。相应地,通过膜片钳对单个含氮星状细胞进行电生理刺激足以释放NO并扩张实质内和上游软脑膜微血管。这些发现表明,小脑星状细胞和浦肯野细胞分别使相邻微血管扩张和收缩,并突出了不同神经元在神经血管耦合中的不同作用。