Suppr超能文献

一种用于海马 CA1 锥体神经元和中间神经元的自适应广义漏电积分和放电模型。

An Adaptive Generalized Leaky Integrate-and-Fire Model for Hippocampal CA1 Pyramidal Neurons and Interneurons.

机构信息

Department of Mathematics and Applications, University of Naples Federico II, Via Cintia ed. 5A, 80126, Naples, Italy.

Institute of Biophysics, National Research Council, Via Ugo La Malfa 153, 90146, Palermo, Italy.

出版信息

Bull Math Biol. 2023 Oct 4;85(11):109. doi: 10.1007/s11538-023-01206-8.

Abstract

Full-scale morphologically and biophysically realistic model networks, aiming at modeling multiple brain areas, provide an invaluable tool to make significant scientific advances from in-silico experiments on cognitive functions to digital twin implementations. Due to the current technical limitations of supercomputer systems in terms of computational power and memory requirements, these networks must be implemented using (at least) simplified neurons. A class of models which achieve a reasonable compromise between accuracy and computational efficiency is given by generalized leaky integrate-and fire models complemented by suitable initial and update conditions. However, we found that these models cannot reproduce the complex and highly variable firing dynamics exhibited by neurons in several brain regions, such as the hippocampus. In this work, we propose an adaptive generalized leaky integrate-and-fire model for hippocampal CA1 neurons and interneurons, in which the nonlinear nature of the firing dynamics is successfully reproduced by linear ordinary differential equations equipped with nonlinear and more realistic initial and update conditions after each spike event, which strictly depends on the external stimulation current. A mathematical analysis of the equilibria stability as well as the monotonicity properties of the analytical solution for the membrane potential allowed (i) to determine general constraints on model parameters, reducing the computational cost of an optimization procedure based on spike times in response to a set of constant currents injections; (ii) to identify additional constraints to quantitatively reproduce and predict the experimental traces from 85 neurons and interneurons in response to any stimulation protocol using constant and piecewise constant current injections. Finally, this approach allows to easily implement a procedure to create infinite copies of neurons with mathematically controlled firing properties, statistically indistinguishable from experiments, to better reproduce the full range and variability of the firing scenarios observed in a real network.

摘要

全尺度形态和生物物理上逼真的模型网络,旨在对多个脑区进行建模,为从认知功能的计算实验到数字孪生体的实现取得重大科学进展提供了宝贵的工具。由于超级计算机系统在计算能力和内存需求方面的当前技术限制,这些网络必须至少使用简化神经元来实现。一类在准确性和计算效率之间取得合理折衷的模型是由广义漏电积分和放电模型补充适当的初始和更新条件构成的。然而,我们发现这些模型不能再现几个脑区(如海马体)中神经元表现出的复杂且高度多变的放电动力学。在这项工作中,我们提出了一种用于海马体 CA1 神经元和中间神经元的自适应广义漏电积分和放电模型,其中通过在线性常微分方程中配备非线性和更现实的初始和更新条件,成功再现了放电动力学的非线性性质,这些条件在每次尖峰事件后严格依赖于外部刺激电流。对膜电位的平衡点稳定性和解析解的单调性性质的数学分析允许:(i)确定模型参数的一般约束条件,从而降低基于尖峰时间的对一组恒定电流注入的响应的优化过程的计算成本;(ii)确定定量再现和预测来自 85 个神经元和中间神经元对任何恒定和分段恒定电流注入的实验轨迹的附加约束条件。最后,这种方法允许轻松实现创建具有数学控制放电特性的神经元的无限副本的过程,这些副本在统计学上与实验无法区分,从而更好地再现真实网络中观察到的全范围和放电场景的可变性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b6c/10550887/09e8356f6bd4/11538_2023_1206_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验