Suppr超能文献

酵母基因组中广泛存在的低亲和力转录相互作用。

Extensive low-affinity transcriptional interactions in the yeast genome.

作者信息

Tanay Amos

机构信息

Center for Studies in Physics and Biology, Rockefeller University, New York, New York 10021, USA.

出版信息

Genome Res. 2006 Aug;16(8):962-72. doi: 10.1101/gr.5113606. Epub 2006 Jun 29.

Abstract

Major experimental and computational efforts are targeted at the characterization of transcriptional networks on a genomic scale. The ultimate goal of many of these studies is to construct networks associating transcription factors with genes via well-defined binding sites. Weaker regulatory interactions other than those occurring at high-affinity binding sites are largely ignored and are not well understood. Here I show that low-affinity interactions are abundant in vivo and quantifiable from current high-throughput ChIP experiments. I develop algorithms that predict DNA-binding energies from sequences and ChIP data across a wide dynamic range of affinities and use them to reveal widespread functionality of low-affinity transcription factor binding. Evolutionary analysis suggests that binding energies of many transcription factors are conserved even in promoters lacking classical binding sites. Gene expression analysis shows that such promoters can generate significant expression. I estimate that while only a small percentage of the genome is strongly regulated by a typical transcription factor, up to an order of magnitude more may be involved in weaker interactions. Low-affinity transcription factor-DNA interaction may therefore be important both evolutionarily and functionally.

摘要

主要的实验和计算工作旨在在基因组规模上表征转录网络。许多此类研究的最终目标是通过明确的结合位点构建将转录因子与基因关联起来的网络。除了在高亲和力结合位点发生的相互作用之外,较弱的调控相互作用在很大程度上被忽视且未得到充分理解。在此我表明,低亲和力相互作用在体内很丰富,并且可从当前的高通量染色质免疫沉淀(ChIP)实验中进行量化。我开发了算法,可从序列和ChIP数据预测跨越广泛亲和力动态范围的DNA结合能,并利用这些算法揭示低亲和力转录因子结合的广泛功能。进化分析表明,即使在缺乏经典结合位点的启动子中,许多转录因子的结合能也是保守的。基因表达分析表明,此类启动子可产生显著的表达。我估计,虽然典型转录因子仅对基因组的一小部分进行强调控,但多达一个数量级的更多部分可能参与较弱的相互作用。因此,低亲和力转录因子与DNA的相互作用在进化和功能上可能都很重要。

相似文献

7
Transcriptional regulatory networks in Saccharomyces cerevisiae.酿酒酵母中的转录调控网络。
Science. 2002 Oct 25;298(5594):799-804. doi: 10.1126/science.1075090.
8
Computational discovery of transcriptional regulatory rules.转录调控规则的计算发现
Bioinformatics. 2005 Sep 1;21 Suppl 2:ii101-7. doi: 10.1093/bioinformatics/bti1117.
9
Statistical methods in integrative analysis for gene regulatory modules.基因调控模块综合分析中的统计方法
Stat Appl Genet Mol Biol. 2008;7(1):Article 28. doi: 10.2202/1544-6115.1369. Epub 2008 Oct 10.
10
Transcription. Of chips and ChIPs.转录。关于芯片与染色质免疫沉淀技术。
Science. 2002 Apr 26;296(5568):666-9. doi: 10.1126/science.1062936.

引用本文的文献

9
The nuance in DNA and transcription factor interactions.DNA与转录因子相互作用中的细微差别。
Nat Rev Mol Cell Biol. 2024 Apr;25(4):251. doi: 10.1038/s41580-023-00685-w.

本文引用的文献

5
Transcriptional regulation by the numbers: models.数字化转录调控:模型
Curr Opin Genet Dev. 2005 Apr;15(2):116-24. doi: 10.1016/j.gde.2005.02.007.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验