Sibille Nathalie, Favier Adrien, Azuaga Ana I, Ganshaw Grant, Bott Richard, Bonvin Alexandre M J J, Boelens Rolf, van Nuland Nico A J
Bijvoet Center for Biomolecular Research, Department of NMR Spectroscopy, Utrecht, The Netherlands.
Protein Sci. 2006 Aug;15(8):1915-27. doi: 10.1110/ps.062213706. Epub 2006 Jul 5.
In this work we compare the dynamics and conformational stability of Pseudomonas mendocina lipase enzyme and its F180P/S205G mutant that shows higher activity and stability for use in washing powders. Our NMR analyses indicate virtually identical structures but reveal remarkable differences in local dynamics, with striking correspondence between experimental data (i.e., (15)N relaxation and H/D exchange rates) and data from Molecular Dynamics simulations. While overall the cores of both proteins are very rigid on the pico- to nanosecond timescale and are largely protected from H/D exchange, the two point mutations stabilize helices alpha1, alpha4, and alpha5 and locally destabilize the H-bond network of the beta-sheet (beta7-beta9). In particular, it emerges that helix alpha5, undergoing some fast destabilizing motions (on the pico- to nanosecond timescale) in wild-type lipase, is substantially rigidified by the mutation of Phe180 for a proline at its N terminus. This observation could be explained by the release of some penalizing strain, as proline does not require any "N-capping" hydrogen bond acceptor in the i+3 position. The combined experimental and simulated data thus indicate that reduced molecular flexibility of the F180P/S205G mutant lipase underlies its increased stability, and thus reveals a correlation between microscopic dynamics and macroscopic thermodynamic properties. This could contribute to the observed altered enzyme activity, as may be inferred from recent studies linking enzyme kinetics to their local molecular dynamics.
在这项工作中,我们比较了门多萨假单胞菌脂肪酶及其F180P/S205G突变体的动力学和构象稳定性,该突变体在洗衣粉应用中表现出更高的活性和稳定性。我们的核磁共振分析表明,两者结构几乎相同,但局部动力学存在显著差异,实验数据(即15N弛豫和H/D交换率)与分子动力学模拟数据之间存在显著对应关系。虽然总体上两种蛋白质的核心在皮秒到纳秒时间尺度上都非常刚性,并且在很大程度上免受H/D交换影响,但这两个点突变使α1、α4和α5螺旋稳定,同时局部破坏了β折叠(β7-β9)的氢键网络。特别是,野生型脂肪酶中的α5螺旋在皮秒到纳秒时间尺度上经历一些快速的不稳定运动,而在其N端将苯丙氨酸突变为脯氨酸后,该螺旋基本刚性化。这一观察结果可以通过释放一些不利应变来解释,因为脯氨酸在i+3位置不需要任何“N-封端”氢键受体。因此,综合实验和模拟数据表明,F180P/S205G突变体脂肪酶分子柔韧性的降低是其稳定性增加的基础,从而揭示了微观动力学与宏观热力学性质之间的相关性。这可能有助于解释观察到的酶活性变化,正如最近将酶动力学与其局部分子动力学联系起来的研究所推断的那样。