Suppr超能文献

三角形银纳米板在平面上的快速沉积:在金属增强荧光中的应用。

Rapid deposition of triangular silver nanoplates on planar surfaces: application to metal-enhanced fluorescence.

作者信息

Aslan Kadir, Lakowicz Joseph R, Geddes Chris D

机构信息

Institute of Fluorescence, Laboratory for Advanced Medical Plasmonics, Medical Biotechnology Center, University of Maryland Biotechnology Institute, Baltimore, Maryland 21201, USA.

出版信息

J Phys Chem B. 2005 Apr 7;109(13):6247-51. doi: 10.1021/jp044235z.

Abstract

A simple and rapid wet-chemical technique for the deposition of silver triangles on conventional glass substrates, which alleviates the need for lithography, has been developed. The technique is based on the seed-mediated cetyltrimethylammonium-bromide-directed growth of silver triangles on glass surfaces, where smaller spherical silver seeds that were attached to the surface were subsequently converted and grown into silver triangles in the presence of a cationic surfactant and silver ions. The size of the silver triangles was controlled by sequential immersion of silver seed-coated glass substrates into a growth solution and by the duration time of immersion. Atomic force microscopy studies revealed that the size of the silver triangles ranged between 100 and 500 nm. Interestingly, these new surfaces are a significant improvement over traditional silver island films for applications in metal-enhanced fluorescence. A routine 16-fold enhancement in emission intensity was typically observed, for protein-immobilized indocyanine green, with a relatively very low loading density of silver triangles on the glass surface.

摘要

已经开发出一种简单快速的湿化学技术,用于在传统玻璃基板上沉积银三角,该技术无需光刻。该技术基于种子介导的十六烷基三甲基溴化铵定向生长银三角在玻璃表面,其中附着在表面的较小球形银种子随后在阳离子表面活性剂和银离子存在下转化并生长成银三角。通过将涂有银种子的玻璃基板顺序浸入生长溶液中以及浸入持续时间来控制银三角的尺寸。原子力显微镜研究表明,银三角的尺寸在100至500纳米之间。有趣的是,这些新表面在用于金属增强荧光的应用中比传统银岛膜有显著改进。对于固定有蛋白质的吲哚菁绿,通常观察到发射强度有16倍的常规增强,玻璃表面上银三角的负载密度相对非常低。

相似文献

4
Metal-enhanced fluorescence using anisotropic silver nanostructures: critical progress to date.
Anal Bioanal Chem. 2005 Jun;382(4):926-33. doi: 10.1007/s00216-005-3195-3. Epub 2005 Jun 4.
5
Silver nanoparticle thin films with nanocavities for surface-enhanced Raman scattering.
Chemphyschem. 2008 Apr 21;9(6):902-10. doi: 10.1002/cphc.200800007.
8
9
Facile fabrication of silver nanoclusters as promising surface-enhanced Raman scattering substrates.
J Nanosci Nanotechnol. 2014 Mar;14(3):2245-51. doi: 10.1166/jnn.2014.8538.
10
Homogeneous silver-coated nanoparticle substrates for enhanced fluorescence detection.
J Phys Chem B. 2006 Nov 23;110(46):23085-91. doi: 10.1021/jp062170p.

引用本文的文献

1
Microfluidic devices integrated with plasmonic nanostructures for sensitive fluorescent immunoassays.
Biomicrofluidics. 2024 Feb 14;18(1):011303. doi: 10.1063/5.0174653. eCollection 2024 Jan.
2
The Influence of Substrate on the Optical Properties of Gold Nanoslits.
J Imaging. 2023 Dec 3;9(12):269. doi: 10.3390/jimaging9120269.
3
Effect of Peptides on the Synthesis, Properties and Wound Healing Capacity of Silver Nanoparticles.
Pharmaceutics. 2023 Oct 16;15(10):2471. doi: 10.3390/pharmaceutics15102471.
7
Waste Fiber Powder Functionalized with Silver Nanoprism for Enhanced Raman Scattering Analysis.
Nanoscale Res Lett. 2017 Dec;12(1):341. doi: 10.1186/s11671-017-2118-5. Epub 2017 May 8.
8
Near-Infrared Fluorescent Materials for Sensing of Biological Targets.
Sensors (Basel). 2008 May 8;8(5):3082-3105. doi: 10.3390/s8053082.
9
Metal-Enhanced Near-Infrared Fluorescence by Micropatterned Gold Nanocages.
ACS Nano. 2015 Oct 27;9(10):10047-54. doi: 10.1021/acsnano.5b03624. Epub 2015 Sep 23.
10
Highly stable polymer coated nano-clustered silver plates: a multimodal optical contrast agent for biomedical imaging.
Nanotechnology. 2014 Nov 7;25(44):445104. doi: 10.1088/0957-4484/25/44/445104. Epub 2014 Oct 17.

本文引用的文献

3
Electrochemical and Laser Deposition of Silver for Use in Metal-Enhanced Fluorescence.
Langmuir. 2003 Jul 22;19(15):6236-6241. doi: 10.1021/la020930r.
5
Synthesis and manipulation of high aspect ratio gold nanorods grown directly on surfaces.
Langmuir. 2004 May 25;20(11):4322-6. doi: 10.1021/la049702i.
6
Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission.
Anal Biochem. 2005 Feb 15;337(2):171-94. doi: 10.1016/j.ab.2004.11.026.
7
Advances in surface-enhanced fluorescence.
J Fluoresc. 2004 Jul;14(4):425-41. doi: 10.1023/b:jofl.0000031824.48401.5c.
9
Controlling anisotropic nanoparticle growth through plasmon excitation.
Nature. 2003 Oct 2;425(6957):487-90. doi: 10.1038/nature02020.
10
Metal-enhanced emission from indocyanine green: a new approach to in vivo imaging.
J Biomed Opt. 2003 Jul;8(3):472-8. doi: 10.1117/1.1578643.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验