Reguera D, Rubí J M, Vilar J M G
Departament de Física Fonamental, Facultat de Física, Universitat de Barcelona, Martí i Franquès, 1, 08028-Barcelona, Spain.
J Phys Chem B. 2005 Nov 24;109(46):21502-15. doi: 10.1021/jp052904i.
Concepts of everyday use such as energy, heat, and temperature have acquired a precise meaning after the development of thermodynamics. Thermodynamics provides the basis for understanding how heat and work are related and the general rules that the macroscopic properties of systems at equilibrium follow. Outside equilibrium and away from macroscopic regimes, most of those rules cannot be applied directly. Here we present recent developments that extend the applicability of thermodynamic concepts deep into mesoscopic and irreversible regimes. We show how the probabilistic interpretation of thermodynamics together with probability conservation laws can be used to obtain Fokker-Planck equations for the relevant degrees of freedom. This approach provides a systematic method to obtain the stochastic dynamics of a system directly from its equilibrium properties. A wide variety of situations can be studied in this way, including many that were thought to be out of reach of thermodynamic theories, such as nonlinear transport in the presence of potential barriers, activated processes, slow relaxation phenomena, and basic processes in biomolecules, such as translocation and stretching.
诸如能量、热量和温度等日常使用的概念在热力学发展之后获得了精确的含义。热力学为理解热量与功之间的关系以及平衡态系统宏观性质所遵循的一般规律提供了基础。在非平衡态且远离宏观状态时,这些规律大多不能直接应用。在此,我们展示了近期的进展,这些进展将热力学概念的适用性扩展到了介观和不可逆领域的深处。我们展示了热力学的概率解释以及概率守恒定律如何能够用于获得相关自由度的福克 - 普朗克方程。这种方法提供了一种直接从系统的平衡性质获取其随机动力学的系统方法。通过这种方式可以研究各种各样的情况,包括许多曾被认为超出热力学理论范畴的情况,例如存在势垒时的非线性输运、活化过程、缓慢弛豫现象以及生物分子中的基本过程,如易位和拉伸。