Wang Xueqi, Turner Elizabeth L, Preisser John S, Li Fan
Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA.
Duke Global Health Institute, Durham, NC, USA.
Biom J. 2022 Apr;64(4):663-680. doi: 10.1002/bimj.202100081. Epub 2021 Dec 13.
In this article, we develop methods for sample size and power calculations in four-level intervention studies when intervention assignment is carried out at any level, with a particular focus on cluster randomized trials (CRTs). CRTs involving four levels are becoming popular in healthcare research, where the effects are measured, for example, from evaluations (level 1) within participants (level 2) in divisions (level 3) that are nested in clusters (level 4). In such multilevel CRTs, we consider three types of intraclass correlations between different evaluations to account for such clustering: that of the same participant, that of different participants from the same division, and that of different participants from different divisions in the same cluster. Assuming arbitrary link and variance functions, with the proposed correlation structure as the true correlation structure, closed-form sample size formulas for randomization carried out at any level (including individually randomized trials within a four-level clustered structure) are derived based on the generalized estimating equations approach using the model-based variance and using the sandwich variance with an independence working correlation matrix. We demonstrate that empirical power corresponds well with that predicted by the proposed method for as few as eight clusters, when data are analyzed using the matrix-adjusted estimating equations for the correlation parameters with a bias-corrected sandwich variance estimator, under both balanced and unbalanced designs.
在本文中,我们开发了在四级干预研究中进行样本量和功效计算的方法,其中干预分配可在任何级别进行,特别关注整群随机试验(CRT)。涉及四级的CRT在医疗保健研究中越来越普遍,例如,在嵌套于群组(第4级)中的部门(第3级)内的参与者(第2级)的评估(第1级)中测量效果。在这种多级CRT中,我们考虑不同评估之间的三种类型的组内相关性以解释这种聚类:同一参与者的相关性、来自同一部门的不同参与者的相关性以及来自同一群组中不同部门的不同参与者的相关性。假设任意链接和方差函数,以所提出的相关结构作为真实相关结构,基于广义估计方程方法,使用基于模型的方差并使用具有独立工作相关矩阵的三明治方差,推导在任何级别进行随机化(包括四级聚类结构内的个体随机试验)的封闭式样本量公式。我们证明,当使用具有偏差校正三明治方差估计器的相关参数的矩阵调整估计方程对数据进行分析时,在平衡和不平衡设计下,对于少至八个群组,经验功效与所提出方法预测的功效相当吻合。