Vineis Paolo, Kriebel David
Division of Epidemiology, Public Health and Primary Care, Imperial College London, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, UK.
Environ Health. 2006 Jul 21;5:21. doi: 10.1186/1476-069X-5-21.
The eruption of genetic research presents a tremendous opportunity to epidemiologists to improve our ability to identify causes of ill health. Epidemiologists have enthusiastically embraced the new tools of genomics and proteomics to investigate gene-environment interactions. We argue that neither the full import nor limitations of such studies can be appreciated without clarifying underlying theoretical models of interaction, etiologic fraction, and the fundamental concept of causality. We therefore explore different models of causality in the epidemiology of disease arising out of genes, environments, and the interplay between environments and genes. We begin from Rothman's "pie" model of necessary and sufficient causes, and then discuss newer approaches, which provide additional insights into multifactorial causal processes. These include directed acyclic graphs and structural equation models. Caution is urged in the application of two essential and closely related concepts found in many studies: interaction (effect modification) and the etiologic or attributable fraction. We review these concepts and present four important limitations. 1. Interaction is a fundamental characteristic of any causal process involving a series of probabilistic steps, and not a second-order phenomenon identified after first accounting for "main effects". 2. Standard methods of assessing interaction do not adequately consider the life course, and the temporal dynamics through which an individual's sufficient cause is completed. Different individuals may be at different stages of development along the path to disease, but this is not usually measurable. Thus, for example, acquired susceptibility in children can be an important source of variation. 3. A distinction must be made between individual-based and population-level models. Most epidemiologic discussions of causality fail to make this distinction. 4. At the population level, there is additional uncertainty in quantifying interaction and assigning etiologic fractions to different necessary causes because of ignorance about the components of the sufficient cause.
遗传学研究的兴起为流行病学家提供了一个绝佳的机会,以提高我们识别健康问题成因的能力。流行病学家积极采用基因组学和蛋白质组学的新工具来研究基因与环境的相互作用。我们认为,如果不阐明相互作用、病因分数和因果关系的基本概念等潜在理论模型,就无法充分理解此类研究的全部意义及其局限性。因此,我们探讨了由基因、环境以及环境与基因之间的相互作用所引发的疾病流行病学中的不同因果关系模型。我们从罗斯曼的必要病因和充分病因的“饼图”模型入手,然后讨论更新的方法,这些方法为多因素因果过程提供了更多见解。其中包括有向无环图和结构方程模型。在应用许多研究中发现的两个基本且密切相关的概念时需谨慎:相互作用(效应修饰)和病因或归因分数。我们回顾了这些概念并提出了四个重要的局限性。1. 相互作用是任何涉及一系列概率步骤的因果过程的基本特征,而不是在首先考虑“主效应”之后才识别出的二阶现象。2. 评估相互作用的标准方法没有充分考虑生命历程以及个体充分病因得以完成的时间动态。不同个体在疾病发展路径上可能处于不同的发育阶段,但这通常无法测量。因此,例如,儿童后天获得的易感性可能是变异的一个重要来源。3. 必须区分基于个体的模型和群体水平的模型。大多数关于因果关系的流行病学讨论都没有做出这种区分。4. 在群体水平上,由于对充分病因的组成部分缺乏了解,在量化相互作用和为不同的必要病因分配病因分数时存在额外的不确定性。