Suppr超能文献

基于两个乳房X线视图的BI-RADS描述符的乳腺癌计算机辅助诊断

Breast cancer CADx based on BI-RAds descriptors from two mammographic views.

作者信息

Gupta Shalini, Chyn Priscilla F, Markey Mia K

机构信息

Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, USA.

出版信息

Med Phys. 2006 Jun;33(6):1810-7. doi: 10.1118/1.2188080.

Abstract

In this study we compared the performance of computer aided diagnosis (CADx) algorithms based on Breast Imaging Reporting And Data System (BI-RADS) descriptors from one or two views. To select cases for the study with different mediolateral (MLO) and craniocaudal (CC) view descriptors, we assessed the agreement in BI-RADS lesion descriptors, BI-RADS assessment, and subtlety ratings for 1626 cases from the Digital Database for Screening Mammogrpahy (DDSM) using kappa statistics. We used 115 mass caseswith different descriptors for the two views to design linear discriminant analysis (LDA) based CADx algorithms. The CADx algorithms used BI-RADS descriptors and patient age as features. Thealgorithms based on BI-RADS descriptors from both the views performed marginally betterthan algorithms based on BI-RADS descriptors from a single view. A system that averaged theresults of two classifiers trained separately on the MLO and CC views displayed the best performance (Az=0.920 +/- 0.027). Thus, some improvement in performance of BI-RADS based CADx algorithms may be achieved by combining information from two mammographic views.

摘要

在本研究中,我们比较了基于乳腺影像报告和数据系统(BI-RADS)描述符的计算机辅助诊断(CADx)算法在单视图或双视图下的性能。为了选择具有不同内外侧斜位(MLO)和头尾位(CC)视图描述符的研究病例,我们使用kappa统计量评估了来自数字乳腺筛查数据库(DDSM)的1626例病例在BI-RADS病变描述符、BI-RADS评估和细微程度评级方面的一致性。我们使用115例具有两种视图不同描述符的肿块病例来设计基于线性判别分析(LDA)的CADx算法。CADx算法使用BI-RADS描述符和患者年龄作为特征。基于双视图BI-RADS描述符的算法表现略优于基于单视图BI-RADS描述符的算法。一个对分别在MLO和CC视图上训练的两个分类器结果进行平均的系统表现出最佳性能(Az = 0.920 +/- 0.027)。因此,通过结合两个乳腺钼靶视图的信息,基于BI-RADS的CADx算法的性能可能会得到一些改善。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验