Suppr超能文献

利用新型互补系统对轮状病毒NSP2八聚体进行结构-功能分析。

Structure-function analysis of rotavirus NSP2 octamer by using a novel complementation system.

作者信息

Taraporewala Zenobia F, Jiang Xiaofang, Vasquez-Del Carpio Rodrigo, Jayaram Hariharan, Prasad B V Venkataram, Patton John T

机构信息

Laboratory of Infectious Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.

出版信息

J Virol. 2006 Aug;80(16):7984-94. doi: 10.1128/JVI.00172-06.

Abstract

Viral inclusion bodies, or viroplasms, that form in rotavirus-infected cells direct replication and packaging of the segmented double-stranded RNA (dsRNA) genome. NSP2, one of two rotavirus proteins needed for viroplasm assembly, possesses NTPase, RNA-binding, and helix-unwinding activities. NSP2 of the rotavirus group causing endemic infantile diarrhea (group A) was shown to self-assemble into large doughnut-shaped octamers with circumferential grooves and deep clefts containing nucleotide-binding histidine triad (HIT)-like motifs. Here, we demonstrate that NSP2 of group C rotavirus, a group that fails to reassort with group A viruses, retains the unique architecture of the group A octamer but differs in surface charge distribution. By using an NSP2-dependent complementation system, we show that the HIT-dependent NTPase activity of NSP2 is necessary for dsRNA synthesis, but not for viroplasm formation. The complementation system also showed that despite the retention of the octamer structure and the HIT-like fold, group C NSP2 failed to rescue replication and viroplasm formation in NSP2-deficient cells infected with group A rotavirus. The distinct differences in the surface charges on the Bristol and SA11 NSP2 octamers suggest that charge complementarity of the viroplasm-forming proteins guides the specificity of viroplasm formation and, possibly, reassortment restriction between rotavirus groups.

摘要

在轮状病毒感染的细胞中形成的病毒包涵体或病毒质,指导分段双链RNA(dsRNA)基因组的复制和包装。NSP2是病毒质组装所需的两种轮状病毒蛋白之一,具有NTPase、RNA结合和解旋活性。已证明引起地方性婴儿腹泻的A组轮状病毒的NSP2能自组装成大型甜甜圈状八聚体,具有圆周凹槽和含有核苷酸结合组氨酸三联体(HIT)样基序的深裂隙。在此,我们证明C组轮状病毒的NSP2(该组不能与A组病毒重配)保留了A组八聚体的独特结构,但表面电荷分布不同。通过使用依赖NSP2的互补系统,我们表明NSP2的依赖HIT的NTPase活性对于dsRNA合成是必需的,但对于病毒质形成不是必需的。互补系统还表明,尽管保留了八聚体结构和HIT样折叠,但C组NSP2未能拯救感染A组轮状病毒的NSP2缺陷细胞中的复制和病毒质形成。布里斯托尔和SA11 NSP2八聚体表面电荷的明显差异表明,病毒质形成蛋白的电荷互补性指导病毒质形成的特异性,并可能指导轮状病毒组之间的重配限制。

相似文献

2
Histidine triad-like motif of the rotavirus NSP2 octamer mediates both RTPase and NTPase activities.
J Mol Biol. 2006 Sep 22;362(3):539-54. doi: 10.1016/j.jmb.2006.07.050. Epub 2006 Jul 29.
3
Role of the histidine triad-like motif in nucleotide hydrolysis by the rotavirus RNA-packaging protein NSP2.
J Biol Chem. 2004 Mar 12;279(11):10624-33. doi: 10.1074/jbc.M311563200. Epub 2003 Dec 29.
4
7
Cryoelectron microscopy structures of rotavirus NSP2-NSP5 and NSP2-RNA complexes: implications for genome replication.
J Virol. 2006 Nov;80(21):10829-35. doi: 10.1128/JVI.01347-06. Epub 2006 Aug 23.

引用本文的文献

1
Characterization of viroplasm-like structures by co-expression of NSP5 and NSP2 across rotavirus species A to J.
J Virol. 2024 Sep 17;98(9):e0097524. doi: 10.1128/jvi.00975-24. Epub 2024 Aug 28.
2
Rotavirus NSP2: A Master Orchestrator of Early Viral Particle Assembly.
Viruses. 2024 May 21;16(6):814. doi: 10.3390/v16060814.
4
Cryo-EM structure of rotavirus B NSP2 reveals its unique tertiary architecture.
J Virol. 2024 Mar 19;98(3):e0166023. doi: 10.1128/jvi.01660-23. Epub 2024 Feb 29.
6
Structural basis of rotavirus RNA chaperone displacement and RNA annealing.
Proc Natl Acad Sci U S A. 2021 Oct 12;118(41). doi: 10.1073/pnas.2100198118.
7
Liquid-liquid phase separation underpins the formation of replication factories in rotaviruses.
EMBO J. 2021 Nov 2;40(21):e107711. doi: 10.15252/embj.2021107711. Epub 2021 Sep 15.
10
Understanding the penetrance of intrinsic protein disorder in rotavirus proteome.
Int J Biol Macromol. 2020 Feb 1;144:892-908. doi: 10.1016/j.ijbiomac.2019.09.166. Epub 2019 Nov 15.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
Reverse genetics system for introduction of site-specific mutations into the double-stranded RNA genome of infectious rotavirus.
Proc Natl Acad Sci U S A. 2006 Mar 21;103(12):4646-51. doi: 10.1073/pnas.0509385103. Epub 2006 Mar 14.
4
Likelihood-enhanced fast translation functions.
Acta Crystallogr D Biol Crystallogr. 2005 Apr;61(Pt 4):458-64. doi: 10.1107/S0907444905001617. Epub 2005 Mar 24.
5
The CCP4 suite: programs for protein crystallography.
Acta Crystallogr D Biol Crystallogr. 1994 Sep 1;50(Pt 5):760-3. doi: 10.1107/S0907444994003112.
6
Rotavirus replication: plus-sense templates for double-stranded RNA synthesis are made in viroplasms.
J Virol. 2004 Jul;78(14):7763-74. doi: 10.1128/JVI.78.14.7763-7774.2004.
7
Characterization of rotavirus NSP2/NSP5 interactions and the dynamics of viroplasm formation.
J Gen Virol. 2004 Mar;85(Pt 3):625-634. doi: 10.1099/vir.0.19611-0.
8
Role of the histidine triad-like motif in nucleotide hydrolysis by the rotavirus RNA-packaging protein NSP2.
J Biol Chem. 2004 Mar 12;279(11):10624-33. doi: 10.1074/jbc.M311563200. Epub 2003 Dec 29.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验