Suppr超能文献

小鼠尾部继发性淋巴水肿:淋巴组织增生、VEGF-C上调及MMP-9的保护作用。

Secondary lymphedema in the mouse tail: Lymphatic hyperplasia, VEGF-C upregulation, and the protective role of MMP-9.

作者信息

Rutkowski Joseph M, Moya Monica, Johannes Jimmy, Goldman Jeremy, Swartz Melody A

机构信息

Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.

出版信息

Microvasc Res. 2006 Nov;72(3):161-71. doi: 10.1016/j.mvr.2006.05.009. Epub 2006 Jul 28.

Abstract

Disturbances in the microcirculation can lead to secondary lymphedema, a common pathological condition that, despite its frequency, still lacks a cure. Lymphedema is clinically well described, but while the genetic underpinnings that cause lymphatic malformations and primary lymphedema are being discovered, the pathophysiology and pathobiology of secondary lymphedema remain poorly understood, partly due to the lack of well-described experimental models. Here, we provide a detailed characterization of secondary lymphedema in the mouse tail and correlate the evolution of tissue swelling to changes in tissue architecture, infiltration of immune cells, deposition of lipids, and proliferation and morphology of the lymphatic vessels. We show that sustained swelling leads to lymphatic hyperplasia and upregulation of vascular endothelial growth factor (VEGF)-C, which may exacerbate the edema because the hyperplastic vessels are poorly functional. The onset of lymphatic hyperplasia occurred prior to the onset of lipid accumulation and peak VEGF-C expression. Langerhans dendritic cells were seen in the dermis migrating from the epidermis to the lymphatic capillaries in edematous tissue. Furthermore, these results were consistent between two different normal mouse strains, but swelling was significantly greater in a matrix metalloproteinase (MMP)-9 null strain. Thus, by characterizing this highly reproducible model of secondary lymphedema, we conclude that VEGF-C upregulation and lymphatic hyperplasia resulting from dermal lymphatic ligation and lymphedema leads to decreased drainage function and that MMP-9 may be important in counteracting tissue swelling.

摘要

微循环紊乱可导致继发性淋巴水肿,这是一种常见的病理状况,尽管其发病率很高,但仍然无法治愈。淋巴水肿在临床上已有详尽描述,然而,虽然导致淋巴管畸形和原发性淋巴水肿的遗传基础正在被发现,但继发性淋巴水肿的病理生理学和病理生物学仍知之甚少,部分原因是缺乏详尽描述的实验模型。在此,我们详细描述了小鼠尾部继发性淋巴水肿的特征,并将组织肿胀的演变与组织结构变化、免疫细胞浸润、脂质沉积以及淋巴管的增殖和形态相关联。我们发现持续肿胀会导致淋巴管增生以及血管内皮生长因子(VEGF)-C上调,这可能会加剧水肿,因为增生的血管功能不佳。淋巴管增生的起始发生在脂质积累和VEGF-C表达峰值之前。在水肿组织中,可见朗格汉斯树突状细胞从表皮迁移至真皮中的淋巴管。此外,在两种不同的正常小鼠品系中这些结果是一致的,但在基质金属蛋白酶(MMP)-9基因敲除品系中肿胀明显更严重。因此,通过对这种高度可重复的继发性淋巴水肿模型进行特征描述,我们得出结论,真皮淋巴管结扎和淋巴水肿导致的VEGF-C上调和淋巴管增生会导致引流功能下降,并且MMP-9可能在对抗组织肿胀中起重要作用。

相似文献

1
Secondary lymphedema in the mouse tail: Lymphatic hyperplasia, VEGF-C upregulation, and the protective role of MMP-9.
Microvasc Res. 2006 Nov;72(3):161-71. doi: 10.1016/j.mvr.2006.05.009. Epub 2006 Jul 28.
2
Prominent Lymphatic Vessel Hyperplasia with Progressive Dysfunction and Distinct Immune Cell Infiltration in Lymphedema.
Am J Pathol. 2016 Aug;186(8):2193-2203. doi: 10.1016/j.ajpath.2016.04.006. Epub 2016 Jun 15.
3
Toll-like receptor deficiency worsens inflammation and lymphedema after lymphatic injury.
Am J Physiol Cell Physiol. 2012 Feb 15;302(4):C709-19. doi: 10.1152/ajpcell.00284.2011. Epub 2011 Nov 2.
4
Dermal collagen and lipid deposition correlate with tissue swelling and hydraulic conductivity in murine primary lymphedema.
Am J Pathol. 2010 Mar;176(3):1122-9. doi: 10.2353/ajpath.2010.090733. Epub 2010 Jan 28.
5
Regulation of inflammation and fibrosis by macrophages in lymphedema.
Am J Physiol Heart Circ Physiol. 2015 May 1;308(9):H1065-77. doi: 10.1152/ajpheart.00598.2014. Epub 2015 Feb 27.
6
An Important Role of VEGF-C in Promoting Lymphedema Development.
J Invest Dermatol. 2017 Sep;137(9):1995-2004. doi: 10.1016/j.jid.2017.04.033. Epub 2017 May 17.
7
Targeting uPARAP Modifies Lymphatic Vessel Architecture and Attenuates Lymphedema.
Circulation. 2025 May 13;151(19):1412-1429. doi: 10.1161/CIRCULATIONAHA.124.072093. Epub 2025 Mar 4.
8
TGF-beta1 is a negative regulator of lymphatic regeneration during wound repair.
Am J Physiol Heart Circ Physiol. 2008 Nov;295(5):H2113-27. doi: 10.1152/ajpheart.00879.2008. Epub 2008 Oct 10.
10
Increased interstitial protein because of impaired lymph drainage does not induce fibrosis and inflammation in lymphedema.
Arterioscler Thromb Vasc Biol. 2013 Feb;33(2):266-74. doi: 10.1161/ATVBAHA.112.300384. Epub 2013 Jan 3.

引用本文的文献

2
Clinical Relevance of Animal Models of Lymphatic Dysfunction and Lymphedema.
Microcirculation. 2025 May;32(4):e70009. doi: 10.1111/micc.70009.
3
Targeting insulin-like growth factor 1 receptor restricts development and severity of secondary lymphedema in mice.
iScience. 2025 Feb 3;28(3):111948. doi: 10.1016/j.isci.2025.111948. eCollection 2025 Mar 21.
4
Dual role of vascular endothelial growth factor-C in post-stroke recovery.
J Exp Med. 2025 Feb 3;222(2). doi: 10.1084/jem.20231816. Epub 2024 Dec 12.
6
Characterization of Immune Cell Infiltration and Collagen Type III Disorganization in Human Secondary Lymphedema: A Case-control Study.
Plast Reconstr Surg Glob Open. 2024 Jun 17;12(6):e5906. doi: 10.1097/GOX.0000000000005906. eCollection 2024 Jun.
7
Breast Cancer-Related Lymphedema Results in Impaired Epidermal Differentiation and Tight Junction Dysfunction.
J Invest Dermatol. 2025 Jan;145(1):85-97.e4. doi: 10.1016/j.jid.2024.05.017. Epub 2024 Jun 13.
8
Quantification of Lymphangiogenesis in the Murine Lymphedema Tail Model Using Intravital Microscopy.
Lymphat Res Biol. 2024 Jun;22(3):195-202. doi: 10.1089/lrb.2023.0048. Epub 2024 May 3.
9
Dysregulation of Lymphatic Endothelial VEGFR3 Signaling in Disease.
Cells. 2023 Dec 28;13(1):68. doi: 10.3390/cells13010068.
10
Interruption of Lymph Flow Worsens the Skin Inflammation Caused by Saprophytic .
Biomedicines. 2023 Dec 6;11(12):3234. doi: 10.3390/biomedicines11123234.

本文引用的文献

1
A sensitive in vivo model for quantifying interstitial convective transport of injected macromolecules and nanoparticles.
J Appl Physiol (1985). 2006 Oct;101(4):1162-9. doi: 10.1152/japplphysiol.00389.2006. Epub 2006 Jun 8.
2
Characterization of lymphangiogenesis in a model of adult skin regeneration.
Am J Physiol Heart Circ Physiol. 2006 Sep;291(3):H1402-10. doi: 10.1152/ajpheart.00038.2006. Epub 2006 Apr 28.
3
The lymphatic vasculature: recent progress and paradigms.
Annu Rev Cell Dev Biol. 2005;21:457-83. doi: 10.1146/annurev.cellbio.21.012704.132338.
4
Lymphatic vascular defects promoted by Prox1 haploinsufficiency cause adult-onset obesity.
Nat Genet. 2005 Oct;37(10):1072-81. doi: 10.1038/ng1642. Epub 2005 Sep 18.
5
Dendritic-cell trafficking to lymph nodes through lymphatic vessels.
Nat Rev Immunol. 2005 Aug;5(8):617-28. doi: 10.1038/nri1670.
6
Overexpression of VEGF-C causes transient lymphatic hyperplasia but not increased lymphangiogenesis in regenerating skin.
Circ Res. 2005 Jun 10;96(11):1193-9. doi: 10.1161/01.RES.0000168918.27576.78. Epub 2005 May 12.
10
Endothelial nitric oxide synthase regulates microlymphatic flow via collecting lymphatics.
Circ Res. 2004 Jul 23;95(2):204-9. doi: 10.1161/01.RES.0000135549.72828.24. Epub 2004 Jun 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验