Suppr超能文献

麻醉剂在脂质双分子层中的分配及其与膜结合肽束的相互作用。

Partitioning of anesthetics into a lipid bilayer and their interaction with membrane-bound peptide bundles.

作者信息

Vemparala Satyavani, Saiz Leonor, Eckenhoff Roderic G, Klein Michael L

机构信息

Department of Chemistry and Center for Molecular Modeling, University of Pennsylvania, Philadelphia, Pennsylvania, USA.

出版信息

Biophys J. 2006 Oct 15;91(8):2815-25. doi: 10.1529/biophysj.106.085324. Epub 2006 Jul 28.

Abstract

Molecular dynamics simulations have been performed to investigate the partitioning of the volatile anesthetic halothane from an aqueous phase into a coexisting hydrated bilayer, composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) lipids, with embedded alpha-helical peptide bundles based on the membrane-bound portions of the alpha- and delta-subunits, respectively, of nicotinic acetylcholine receptor. In the molecular dynamics simulations halothane molecules spontaneously partitioned into the DOPC bilayer and then preferentially occupied regions close to lipid headgroups. A single halothane molecule was observed to bind to tyrosine (Tyr-277) residue in the alpha-subunit, an experimentally identified specific binding site. The binding of halothane attenuated the local loop dynamics of alpha-subunit and significantly influenced global concerted motions suggesting anesthetic action in modulating protein function. Steered molecular dynamics calculations on a single halothane molecule partitioned into a DOPC lipid bilayer were performed to probe the free energy profile of halothane across the lipid-water interface and rationalize the observed spontaneous partitioning. Partitioned halothane molecules affect the hydrocarbon chains of the DOPC lipid, by lowering of the hydrocarbon tilt angles. The anesthetic molecules also caused a decrease in the number of peptide-lipid contacts. The observed local and global effects of anesthetic binding on protein motions demonstrated in this study may underlie the mechanism of action of anesthetics at a molecular level.

摘要

已进行分子动力学模拟,以研究挥发性麻醉剂氟烷从水相分配到共存的水合双层膜中的情况,该双层膜由1,2 - 二油酰 - sn - 甘油 - 3 - 磷酸胆碱(DOPC)脂质组成,并分别基于烟碱型乙酰胆碱受体α亚基和δ亚基的膜结合部分嵌入α - 螺旋肽束。在分子动力学模拟中,氟烷分子自发地分配到DOPC双层膜中,然后优先占据靠近脂质头部基团的区域。观察到单个氟烷分子与α亚基中的酪氨酸(Tyr - 277)残基结合,这是一个经实验鉴定的特异性结合位点。氟烷的结合减弱了α亚基的局部环动力学,并显著影响整体协同运动,表明其在调节蛋白质功能方面的麻醉作用。对分配到DOPC脂质双层中的单个氟烷分子进行了引导分子动力学计算,以探测氟烷跨脂质 - 水界面的自由能分布,并合理解释观察到的自发分配现象。分配的氟烷分子通过降低烃链倾斜角来影响DOPC脂质的烃链。麻醉分子还导致肽 - 脂质接触数量减少。本研究中观察到的麻醉剂结合对蛋白质运动的局部和全局影响可能是麻醉剂在分子水平上作用机制的基础。

相似文献

1
Partitioning of anesthetics into a lipid bilayer and their interaction with membrane-bound peptide bundles.
Biophys J. 2006 Oct 15;91(8):2815-25. doi: 10.1529/biophysj.106.085324. Epub 2006 Jul 28.
2
Concentration effects of volatile anesthetics on the properties of model membranes: a coarse-grain approach.
Biophys J. 2005 Mar;88(3):1524-34. doi: 10.1529/biophysj.104.044354. Epub 2004 Dec 21.
3
Computational studies on the interactions of inhalational anesthetics with proteins.
Acc Chem Res. 2010 Jan 19;43(1):103-10. doi: 10.1021/ar900149j.
5
Molecular dynamics simulation of four-alpha-helix bundles that bind the anesthetic halothane.
FEBS Lett. 2000 Jul 28;478(1-2):61-6. doi: 10.1016/s0014-5793(00)01792-0.
7
Molecular dynamics simulation of anesthetic-phospholipid bilayer interactions.
J Biomol Struct Dyn. 1995 Feb;12(4):725-54. doi: 10.1080/07391102.1995.10508773.
8
Molecular dynamics simulation of a synthetic four-alpha-helix bundle that binds the anesthetic halothane.
FEBS Lett. 1999 Jul 23;455(3):332-8. doi: 10.1016/s0014-5793(99)00890-x.

引用本文的文献

2
Role of Disulphide Bonds in Membrane Partitioning of a Viral Peptide.
J Membr Biol. 2022 Jun;255(2-3):129-142. doi: 10.1007/s00232-022-00218-0. Epub 2022 Feb 26.
4
Menthol Binding to the Human α4β2 Nicotinic Acetylcholine Receptor Facilitated by Its Strong Partitioning in the Membrane.
J Phys Chem B. 2020 Mar 12;124(10):1866-1880. doi: 10.1021/acs.jpcb.9b10092. Epub 2020 Mar 2.
5
Characterization of Lipid-Protein Interactions and Lipid-Mediated Modulation of Membrane Protein Function through Molecular Simulation.
Chem Rev. 2019 May 8;119(9):6086-6161. doi: 10.1021/acs.chemrev.8b00608. Epub 2019 Apr 12.
7
A membrane-embedded pathway delivers general anesthetics to two interacting binding sites in the ion channel.
J Biol Chem. 2017 Jun 9;292(23):9480-9492. doi: 10.1074/jbc.M117.780197. Epub 2017 Apr 18.
8
The cellular membrane as a mediator for small molecule interaction with membrane proteins.
Biochim Biophys Acta. 2016 Oct;1858(10):2290-2304. doi: 10.1016/j.bbamem.2016.04.016. Epub 2016 May 6.
9
Structural perturbation of a dipalmitoylphosphatidylcholine (DPPC) bilayer by warfarin and its bolaamphiphilic analogue: A molecular dynamics study.
J Colloid Interface Sci. 2016 Apr 15;468:227-237. doi: 10.1016/j.jcis.2016.01.056. Epub 2016 Jan 27.
10
Pentameric Ligand-gated Ion Channels : Insights from Computation.
Mol Simul. 2014 Apr 17;40(10-11):821-829. doi: 10.1080/08927022.2014.896462.

本文引用的文献

1
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
3
Unfolding a linker between helical repeats.
J Mol Biol. 2005 Jun 10;349(3):638-47. doi: 10.1016/j.jmb.2005.03.086. Epub 2005 Apr 15.
4
A gating mechanism proposed from a simulation of a human alpha7 nicotinic acetylcholine receptor.
Proc Natl Acad Sci U S A. 2005 May 10;102(19):6813-8. doi: 10.1073/pnas.0407739102. Epub 2005 Apr 27.
6
Refined structure of the nicotinic acetylcholine receptor at 4A resolution.
J Mol Biol. 2005 Mar 4;346(4):967-89. doi: 10.1016/j.jmb.2004.12.031. Epub 2005 Jan 25.
7
Ligand-induced conformational change in the alpha7 nicotinic receptor ligand binding domain.
Biophys J. 2005 Apr;88(4):2564-76. doi: 10.1529/biophysj.104.053934. Epub 2005 Jan 21.
8
Concentration effects of volatile anesthetics on the properties of model membranes: a coarse-grain approach.
Biophys J. 2005 Mar;88(3):1524-34. doi: 10.1529/biophysj.104.044354. Epub 2004 Dec 21.
9
The transmembrane domain of the acetylcholine receptor: insights from simulations on synthetic peptide models.
Biophys J. 2005 Feb;88(2):959-70. doi: 10.1529/biophysj.104.049726. Epub 2004 Nov 19.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验