Erez Noam, Gordon Goren, Nest Mathias, Kurizki Gershon
Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel.
Nature. 2008 Apr 10;452(7188):724-7. doi: 10.1038/nature06873.
Heat flow between a large thermal 'bath' and a smaller system brings them progressively closer to thermal equilibrium while increasing their entropy. Fluctuations involving a small fraction of a statistical ensemble of systems interacting with the bath result in deviations from this trend. In this respect, quantum and classical thermodynamics are in agreement. Here we predict a different trend in a purely quantum mechanical setting: disturbances of thermal equilibrium between two-level systems (TLSs) and a bath, caused by frequent, brief quantum non-demolition measurements of the TLS energy states. By making the measurements increasingly frequent, we encounter first the anti-Zeno regime and then the Zeno regime (namely where the TLSs' relaxation respectively speeds up and slows down). The corresponding entropy and temperature of both the system and the bath are then found to either decrease or increase depending only on the rate of observation, contrary to the standard thermodynamical rules that hold for memory-less (Markov) baths. From a practical viewpoint, these anomalies may offer the possibility of very fast control of heat and entropy in quantum systems, allowing cooling and state purification over an interval much shorter than the time needed for thermal equilibration or for a feedback control loop.
大型热“库”与较小系统之间的热流会使它们逐渐接近热平衡,同时增加它们的熵。涉及与热库相互作用的一小部分系统统计系综的涨落会导致偏离这一趋势。在这方面,量子热力学和经典热力学是一致的。在此,我们预测在纯量子力学环境中的一种不同趋势:由对两能级系统(TLS)能量态进行频繁、短暂的量子非破坏测量所引起的TLS与热库之间热平衡的扰动。通过使测量越来越频繁,我们首先会遇到反芝诺 regime,然后是芝诺 regime(即TLS的弛豫分别加快和减慢的情况)。随后发现,系统和热库的相应熵和温度仅取决于观测速率,要么降低要么升高,这与适用于无记忆(马尔可夫)热库的标准热力学规则相反。从实际角度来看,这些反常现象可能为量子系统中的热和熵的极快速控制提供可能性,从而在比热平衡或反馈控制回路所需时间短得多的时间间隔内实现冷却和态纯化。