House Kurt Zenz, Schrag Daniel P, Harvey Charles F, Lackner Klaus S
Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA.
Proc Natl Acad Sci U S A. 2006 Aug 15;103(33):12291-5. doi: 10.1073/pnas.0605318103. Epub 2006 Aug 7.
Stabilizing the concentration of atmospheric CO(2) may require storing enormous quantities of captured anthropogenic CO(2) in near-permanent geologic reservoirs. Because of the subsurface temperature profile of terrestrial storage sites, CO(2) stored in these reservoirs is buoyant. As a result, a portion of the injected CO(2) can escape if the reservoir is not appropriately sealed. We show that injecting CO(2) into deep-sea sediments below [corrected] 3,000-m water depth and a few hundred meters of sediment provides permanent geologic storage even with large geomechanical perturbations. At the high pressures and low temperatures common in deep-sea sediments, CO(2) resides in its liquid phase and can be denser than the overlying pore fluid, causing the injected CO(2) to be gravitationally stable. Additionally, CO(2) hydrate formation will impede the flow of CO(2)(l) and serve as a second cap on the system. The evolution of the CO(2) plume is described qualitatively from the injection to the formation of CO(2) hydrates and finally to the dilution of the CO(2)(aq) solution by diffusion. If calcareous sediments are chosen, then the dissolution of carbonate host rock by the CO(2)(aq) solution will slightly increase porosity, which may cause large increases in permeability. Karst formation, however, is unlikely because total dissolution is limited to only a few percent of the rock volume. The total CO(2) storage capacity within the 200-mile economic zone of the U.S. coastline is enormous, capable of storing thousands of years of current U.S. CO(2) emissions.
稳定大气中二氧化碳的浓度可能需要将大量捕获的人为二氧化碳存储在近乎永久性的地质储层中。由于陆地存储地点的地下温度分布,存储在这些储层中的二氧化碳具有浮力。因此,如果储层密封不当,注入的一部分二氧化碳可能会逸出。我们表明,即使在存在较大地质力学扰动的情况下,将二氧化碳注入水深超过3000米且有几百米沉积物覆盖的深海沉积物中也能实现永久性地质存储。在深海沉积物常见的高压和低温条件下,二氧化碳以液相存在,其密度可能比上覆孔隙流体大,从而使注入的二氧化碳在重力作用下保持稳定。此外,二氧化碳水合物的形成将阻碍液态二氧化碳的流动,并成为该系统的第二道封盖。从注入开始,到二氧化碳水合物形成,最后到通过扩散稀释溶解的二氧化碳溶液,对二氧化碳羽流的演变进行了定性描述。如果选择钙质沉积物,那么溶解的二氧化碳溶液对碳酸盐主岩的溶解将使孔隙度略有增加,这可能导致渗透率大幅提高。然而,岩溶形成的可能性不大,因为完全溶解仅限于岩石体积的百分之几。美国海岸线200英里经济区内的二氧化碳总存储容量巨大,能够存储美国目前数千年的二氧化碳排放量。