Teng Yihua, Zhang Dongxiao
Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, China.
Institute of Ocean Research, Peking University, Beijing 100871, China.
Sci Adv. 2018 Jul 4;4(7):eaao6588. doi: 10.1126/sciadv.aao6588. eCollection 2018 Jul.
Sequestration of carbon dioxide in deep-sea sediments has been proposed for the long-term storage of anthropogenic CO that can take advantage of the current offshore infrastructure. It benefits from the negative buoyancy effect and hydrate formation under conditions of high pressure and low temperature. However, the multiphysics process of injection and postinjection fate of CO and the feasibility of subseabed disposal of CO under different geological and operational conditions have not been well studied. With a detailed study of the coupled processes, we investigate whether storing CO into deep-sea sediments is viable, efficient, and secure over the long term. We also study the evolution of multiphase and multicomponent flow and the impact of hydrate formation on storage efficiency. The results show that low buoyancy and high viscosity slow down the ascending plume and the forming of the hydrate cap effectively reduces permeability and finally becomes an impermeable seal, thus limiting the movement of CO toward the seafloor. We identify different flow patterns at varied time scales by analyzing the mass distribution of CO in different phases over time. We observe the formation of a fluid inclusion, which mainly consists of liquid CO and is encapsulated by an impermeable hydrate film in the diffusion-dominated stage. The trapped liquid CO and CO hydrate finally dissolve into the pore water through diffusion of the CO component, resulting in permanent storage. We perform sensitivity analyses on storage efficiency under variable geological and operational conditions. We find that under a deep-sea setting, CO sequestration in intact marine sediments is generally safe and permanent.
将二氧化碳封存于深海沉积物中已被提议作为人为产生的二氧化碳的长期储存方式,这可以利用现有的海上基础设施。它得益于高压低温条件下的负浮力效应和水合物形成。然而,二氧化碳注入及注入后归宿的多物理过程以及在不同地质和操作条件下海底处置二氧化碳的可行性尚未得到充分研究。通过对耦合过程的详细研究,我们调查将二氧化碳储存于深海沉积物在长期来看是否可行、高效且安全。我们还研究多相多组分流的演化以及水合物形成对储存效率的影响。结果表明,低浮力和高粘度减缓了上升羽流,水合物盖层的形成有效降低了渗透率并最终形成不透水密封,从而限制了二氧化碳向海底的移动。通过分析不同阶段二氧化碳在不同相中的质量分布随时间的变化,我们确定了不同时间尺度下的不同流型。我们观察到形成了一种流体包裹体,其主要由液态二氧化碳组成,并在扩散主导阶段被不透水的水合物膜包裹。被困的液态二氧化碳和二氧化碳水合物最终通过二氧化碳组分的扩散溶解到孔隙水中,实现永久储存。我们对不同地质和操作条件下的储存效率进行了敏感性分析。我们发现,在深海环境下,将二氧化碳封存于完整的海洋沉积物中总体上是安全且永久的。