Decembrini Sarah, Andreazzoli Massimiliano, Vignali Robert, Barsacchi Giuseppina, Cremisi Federico
Dipartimento di Biologia, Università degli Studi di Pisa, Pisa, Italy.
PLoS Biol. 2006 Sep;4(9):e272. doi: 10.1371/journal.pbio.0040272.
The reason why different types of vertebrate nerve cells are generated in a particular sequence is still poorly understood. In the vertebrate retina, homeobox genes play a crucial role in establishing different cell identities. Here we provide evidence of a cellular clock that sequentially activates distinct homeobox genes in embryonic retinal cells, linking the identity of a retinal cell to its time of generation. By in situ expression analysis, we found that the three Xenopus homeobox genes Xotx5b, Xvsx1, and Xotx2 are initially transcribed but not translated in early retinal progenitors. Their translation requires cell cycle progression and is sequentially activated in photoreceptors (Xotx5b) and bipolar cells (Xvsx1 and Xotx2). Furthermore, by in vivo lipofection of "sensors" in which green fluorescent protein translation is under control of the 3' untranslated region (UTR), we found that the 3' UTRs of Xotx5b, Xvsx1, and Xotx2 are sufficient to drive a spatiotemporal pattern of translation matching that of the corresponding proteins and consistent with the time of generation of photoreceptors (Xotx5b) and bipolar cells (Xvsx1 and Xotx2). The block of cell cycle progression of single early retinal progenitors impairs their differentiation as photoreceptors and bipolar cells, but is rescued by the lipofection of Xotx5b and Xvsx1 coding sequences, respectively. This is the first evidence to our knowledge that vertebrate homeobox proteins can work as effectors of a cellular clock to establish distinct cell identities.
不同类型的脊椎动物神经细胞按特定顺序生成的原因仍知之甚少。在脊椎动物视网膜中,同源框基因在确立不同细胞身份方面起着关键作用。在此,我们提供了一个细胞时钟的证据,该时钟在胚胎视网膜细胞中依次激活不同的同源框基因,将视网膜细胞的身份与其生成时间联系起来。通过原位表达分析,我们发现非洲爪蟾的三个同源框基因Xotx5b、Xvsx1和Xotx2最初在早期视网膜祖细胞中被转录但未被翻译。它们的翻译需要细胞周期进程,并且在光感受器(Xotx5b)和双极细胞(Xvsx1和Xotx2)中依次被激活。此外,通过对绿色荧光蛋白翻译受3'非翻译区(UTR)控制的“传感器”进行体内脂质转染,我们发现Xotx5b、Xvsx1和Xotx2的3'UTR足以驱动与相应蛋白质相匹配的时空翻译模式,并与光感受器(Xotx5b)和双极细胞(Xvsx1和Xotx2)的生成时间一致。单个早期视网膜祖细胞的细胞周期进程受阻会损害它们向光感受器和双极细胞的分化,但分别通过Xotx5b和Xvsx1编码序列的脂质转染得以挽救。据我们所知,这是脊椎动物同源框蛋白可作为细胞时钟效应器来确立不同细胞身份的首个证据。