Kevrekidis P G, Whitaker N, Good D J, Herring G J
Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003-4515, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Jun;73(6 Pt 1):061926. doi: 10.1103/PhysRevE.73.061926. Epub 2006 Jun 30.
In this work, we show a mathematical model for the angiogenesis by endothelial cells. We present the model at the level of partial differential equations, describing the spatiotemporal evolution of the cell population, the extracellular matrix macromolecules, the proteases, the tumor angiogenic factors, and the possible presence of inhibitors. We mainly focus, however, on a complementary, more physiologically realistic, hybrid approach in which the cells are treated as individual particles. We examine the model numerically in two-dimensional settings, discussing its comparison with experimental results.
在这项工作中,我们展示了一个关于内皮细胞血管生成的数学模型。我们在偏微分方程层面呈现该模型,描述细胞群体、细胞外基质大分子、蛋白酶、肿瘤血管生成因子以及可能存在的抑制剂的时空演化。然而,我们主要关注一种互补的、更符合生理实际的混合方法,其中细胞被视为单个粒子。我们在二维环境下对该模型进行数值研究,并讨论其与实验结果的比较。