Suppr超能文献

一项关于磁共振波谱用于脑肿瘤特征描述的系统文献综述。

A systematic literature review of magnetic resonance spectroscopy for the characterization of brain tumors.

作者信息

Hollingworth W, Medina L S, Lenkinski R E, Shibata D K, Bernal B, Zurakowski D, Comstock B, Jarvik J G

机构信息

Department of Radiology, University of Washington, 325 Ninth Avenue, Seattle, WA 98104, USA.

出版信息

AJNR Am J Neuroradiol. 2006 Aug;27(7):1404-11.

Abstract

BACKGROUND AND PURPOSE

Proton MR spectroscopy ((1)H-MR spectroscopy) is a potentially useful adjunct to anatomic MR imaging in the characterization of brain tumors. We performed an updated systematic review of the evidence.

METHODS

We employed a standardized search strategy to find studies published during 2002-2004. We reviewed studies measuring diagnostic accuracy and diagnostic, therapeutic, or health impact of (1)H-MR spectroscopy. We abstracted information on study design, (1)H-MR spectroscopy technique, and methodologic quality. We categorized studies into 5 subgroups: (1) metastasis versus high-grade tumor; (2) high-versus low-grade tumor; (3) recurrent tumor versus radiation necrosis; (4) tumor extent; and (5) tumor versus non-neoplastic lesion.

RESULTS

We identified 26 studies evaluating diagnostic performance, diagnostic impact, or therapeutic impact. No articles evaluated patient health or cost-effectiveness. Methodologic quality was mixed; most used histopathology as the reference standard but did not specify blinded interpretation of histopathology. One large study demonstrated a statistically significant increase in diagnostic accuracy for indeterminate brain lesions from 55%, based on MR imaging, to 71% after analysis of (1)H-MR spectroscopy. Several studies have found that (1)H-MR spectroscopy is highly accurate for distinguishing high- and low-grade gliomas, though the incremental benefit of (1)H-MR spectroscopy in this setting is less clear. Interpretation for the other clinical subgroups is limited by the small number of studies.

CONCLUSION

The current evidence on the accuracy of (1)H-MR spectroscopy in the characterization of brain tumors is promising. However, additional high-quality studies are needed to convince policy makers. We present guidelines to help focus future research in this area.

摘要

背景与目的

质子磁共振波谱(¹H-MR波谱)在脑肿瘤特征性分析中可能是一种对解剖学磁共振成像有用的辅助手段。我们对相关证据进行了更新的系统评价。

方法

我们采用标准化检索策略查找2002 - 2004年期间发表的研究。我们回顾了测量¹H-MR波谱诊断准确性以及诊断、治疗或健康影响的研究。我们提取了关于研究设计、¹H-MR波谱技术和方法学质量的信息。我们将研究分为5个亚组:(1)转移瘤与高级别肿瘤;(2)高级别与低级别肿瘤;(3)复发性肿瘤与放射性坏死;(4)肿瘤范围;(5)肿瘤与非肿瘤性病变。

结果

我们确定了26项评估诊断性能、诊断影响或治疗影响的研究。没有文章评估患者健康或成本效益。方法学质量参差不齐;大多数研究使用组织病理学作为参考标准,但未明确说明对组织病理学进行盲法解读。一项大型研究表明,对于不确定的脑病变,基于磁共振成像的诊断准确性从55%有统计学显著提高,在分析¹H-MR波谱后提高到71%。几项研究发现,¹H-MR波谱在区分高级别和低级别胶质瘤方面高度准确,尽管在这种情况下¹H-MR波谱的增量效益尚不太明确。其他临床亚组的解读因研究数量少而受限。

结论

目前关于¹H-MR波谱在脑肿瘤特征性分析中准确性的证据很有前景。然而,需要更多高质量研究来说服政策制定者。我们提出了指导方针,以帮助聚焦该领域未来的研究。

相似文献

3
Systemic treatments for metastatic cutaneous melanoma.转移性皮肤黑色素瘤的全身治疗
Cochrane Database Syst Rev. 2018 Feb 6;2(2):CD011123. doi: 10.1002/14651858.CD011123.pub2.

引用本文的文献

4
Glioblastoma in Patients With Multiple Sclerosis.多发性硬化症患者中的胶质母细胞瘤
Neurohospitalist. 2022 Oct;12(4):607-616. doi: 10.1177/19418744221106003. Epub 2022 Jun 8.
8
Analyzing magnetic resonance imaging data from glioma patients using deep learning.利用深度学习分析脑胶质瘤患者的磁共振成像数据。
Comput Med Imaging Graph. 2021 Mar;88:101828. doi: 10.1016/j.compmedimag.2020.101828. Epub 2020 Dec 2.
9
Deuterium Metabolic Imaging of the Healthy and Diseased Brain.氘代谢脑影像在健康和疾病脑研究中的应用
Neuroscience. 2021 Oct 15;474:94-99. doi: 10.1016/j.neuroscience.2021.01.023. Epub 2021 Jan 22.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验