Suppr超能文献

肺炎链球菌中青霉素的两个杀菌靶点:自溶依赖性和非自溶依赖性杀伤机制。

Two bactericidal targets for penicillin in pneumococci: autolysis-dependent and autolysis-independent killing mechanisms.

作者信息

Moreillon P, Markiewicz Z, Nachman S, Tomasz A

机构信息

Laboratory of Microbiology, Rockefeller University, New York, New York 10021.

出版信息

Antimicrob Agents Chemother. 1990 Jan;34(1):33-9. doi: 10.1128/AAC.34.1.33.

Abstract

It has been assumed that penicillin (and also other cell wall inhibitors) kill pneumococci predominantly by triggering their major autolytic enzyme (an N-acetylmuramoyl-L-alanine amidase; referred to as amidase), resulting in massive cell wall degradation. Three types of experiments suggest that only part of this killing is due to cell lysis by amidase. (i) Suppression of penicillin-induced lysis by specific inhibitors of amidase protected pneumococci only marginally from killing in spite of prolonged exposure to concentrations of penicillin that were 10x, 20x, or 100x greater than the MIC. (ii) Mutants from which the amidase was completely eliminated by plasmid insertion or deletion (Lyt-) were still killed, albeit at a slower rate than the wild-type Lyt+ strains (3 to 4 log units instead of 4 to 5 log units per 6 h, i.e., about 1 log unit slower than the wild type; P less than 0.001). (iii) A new mutation (cid), which was not related to the amidase gene, further reduced killing of mutants lacking amidase to 1 log unit per 6 h (Lyt- Cid- phenotype). Reintroduction of the amidase gene into Lyt- Cid- cells partially restored penicillin-induced lysis but increased only slightly the rate of killing (from 1 log unit per 6 h in Lyt- Cid- cells to 2 log units per 6 h in Lyt+ Cid- cells). We conclude that penicillin kills pneumococci by two distinct mechanisms: one that involves the triggering of the amidase (about 1 log unit of killing per 6 h) and another, amidase-independent mechanism that is responsible for 3 to 4 log units of killing per 6 h. Triggering of the amidase activity in situ in growing bacteria was significantly reduced in Lyt+ Cid- cells, indicating that there is some regulatory interaction between the cid gene product and the amidase.

摘要

人们一直认为青霉素(以及其他细胞壁抑制剂)主要通过触发肺炎球菌的主要自溶酶(一种N - 乙酰胞壁酰 - L - 丙氨酸酰胺酶;称为酰胺酶)来杀死肺炎球菌,从而导致大量细胞壁降解。三类实验表明,这种杀伤作用只有一部分是由于酰胺酶引起的细胞裂解。(i)尽管长时间暴露于比最低抑菌浓度(MIC)高10倍、20倍或100倍的青霉素浓度下,但酰胺酶的特异性抑制剂对青霉素诱导的裂解的抑制仅略微保护肺炎球菌免于被杀灭。(ii)通过质粒插入或缺失完全消除酰胺酶的突变体(Lyt-)仍然会被杀灭,尽管其杀灭速度比野生型Lyt+菌株慢(每6小时杀灭3至4个对数单位,而不是4至5个对数单位,即比野生型慢约1个对数单位;P小于0.001)。(iii)一种与酰胺酶基因无关的新突变(cid),进一步将缺乏酰胺酶的突变体的杀灭率降低至每6小时1个对数单位(Lyt- Cid-表型)。将酰胺酶基因重新引入Lyt- Cid-细胞中部分恢复了青霉素诱导的裂解,但仅略微提高了杀灭速度(从Lyt- Cid-细胞中的每6小时1个对数单位增加到Lyt+ Cid-细胞中的每6小时2个对数单位)。我们得出结论,青霉素通过两种不同机制杀死肺炎球菌:一种涉及触发酰胺酶(每6小时约1个对数单位的杀灭),另一种独立于酰胺酶的机制负责每6小时3至4个对数单位的杀灭。在生长的细菌中原位触发酰胺酶活性在Lyt+ Cid-细胞中显著降低,表明cid基因产物与酰胺酶之间存在一些调节相互作用。

相似文献

2
Autolysins are direct involved in the bactericidal effect caused by penicillin in wild type and in tolerant pneumococci.
FEMS Microbiol Lett. 1990 Jan 1;54(1-3):317-22. doi: 10.1016/0378-1097(90)90305-a.
3
Insertional inactivation of the major autolysin gene of Streptococcus pneumoniae.
J Bacteriol. 1988 Dec;170(12):5931-4. doi: 10.1128/jb.170.12.5931-5934.1988.
4
5
Lytic and bactericidal activity of FCE 22101.
J Antimicrob Chemother. 1989 Mar;23 Suppl C:75-83. doi: 10.1093/jac/23.suppl_c.75.
7
Mechanism of pneumococcal cell wall degradation in vitro and in vivo.
J Bacteriol. 1989 Jan;171(1):114-9. doi: 10.1128/jb.171.1.114-119.1989.
8
Role of autolysins in the killing of bacteria by some bactericidal antibiotics.
J Bacteriol. 1971 Dec;108(3):1235-43. doi: 10.1128/jb.108.3.1235-1243.1971.
10
Suppression of the lytic and bactericidal effects of cell wallinhibitory antibiotics.
Antimicrob Agents Chemother. 1976 Oct;10(4):697-706. doi: 10.1128/AAC.10.4.697.

引用本文的文献

2
The Tol-Pal System Plays an Important Role in Maintaining Cell Integrity During Elongation in .
Front Microbiol. 2022 May 3;13:891926. doi: 10.3389/fmicb.2022.891926. eCollection 2022.
3
Multi-omics based characterization of antibiotic response in clinical isogenic isolates of methicillin-susceptible/-resistant .
RSC Adv. 2020 Jul 27;10(46):27864-27873. doi: 10.1039/d0ra05407k. eCollection 2020 Jul 21.
5
Understanding tolerance to cell wall-active antibiotics.
Ann N Y Acad Sci. 2021 Jul;1496(1):35-58. doi: 10.1111/nyas.14541. Epub 2020 Dec 3.
6
Inhibiting the copper efflux system in microbes as a novel approach for developing antibiotics.
PLoS One. 2019 Dec 30;14(12):e0227070. doi: 10.1371/journal.pone.0227070. eCollection 2019.
10
Bacterial programmed cell death: making sense of a paradox.
Nat Rev Microbiol. 2014 Jan;12(1):63-9. doi: 10.1038/nrmicro3136.

本文引用的文献

1
A study of the genetic material determining an enzyme in Pneumococcus.
Biochim Biophys Acta. 1960 Apr 22;39:508-18. doi: 10.1016/0006-3002(60)90205-5.
2
Alteration of Escherichia coli murein during amino acid starvation.
J Bacteriol. 1980 Dec;144(3):1009-16. doi: 10.1128/jb.144.3.1009-1016.1980.
3
Cell lysis by induction of cloned lambda lysis genes.
Mol Gen Genet. 1981;182(2):326-31. doi: 10.1007/BF00269678.
4
Lysis of Escherichia coli by induction of cloned phi X174 genes.
Mol Gen Genet. 1982;185(3):493-7. doi: 10.1007/BF00334146.
5
Attachment of pneumococcal autolysin to wall teichoic acids, an essential step in enzymatic wall degradation.
J Bacteriol. 1984 Jun;158(3):1188-90. doi: 10.1128/jb.158.3.1188-1190.1984.
6
Model for the mechanism controlling the expression of competent state in Pneumococcus cultures.
J Bacteriol. 1966 Mar;91(3):1050-61. doi: 10.1128/jb.91.3.1050-1061.1966.
7
Marker discrimination in transformation and mutation of pneumococcus.
Proc Natl Acad Sci U S A. 1973 Dec;70(12):3541-5. doi: 10.1073/pnas.70.12.3541.
8
Antibiotic tolerance among clinical isolates of bacteria.
Rev Infect Dis. 1985 May-Jun;7(3):368-86. doi: 10.1093/clinids/7.3.368.
9
Searching for autolysin functions. Characterization of a pneumococcal mutant deleted in the lytA gene.
Eur J Biochem. 1986 Jul 15;158(2):289-93. doi: 10.1111/j.1432-1033.1986.tb09749.x.
10
Phenotypic tolerance: the search for beta-lactam antibiotics that kill nongrowing bacteria.
Rev Infect Dis. 1986 Jul-Aug;8 Suppl 3:S279-91. doi: 10.1093/clinids/8.supplement_3.s279.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验