Atlas Steven J, Chang Yuchiao, Lasko Thomas A, Chueh Henry C, Grant Richard W, Barry Michael J
General Medicine Division, Medical Services, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
J Gen Intern Med. 2006 Sep;21(9):973-8. doi: 10.1111/j.1525-1497.2006.00509.x.
Evaluating the quality of care provided by individual primary care physicians (PCPs) may be limited by failing to know which patients the PCP feels personally responsible for.
To develop and validate a model for linking patients to specific PCPs.
Retrospective convenience sample.
Eighteen PCPs from 10 practice sites within an academic adult primary care network.
Each PCP reviewed the records for all outpatients seen over the preceding 3 years (16,435 patients reviewed) and designated each patient as "My Patient" or "Not My Patient." Using this reference standard, we developed an algorithm with logistic regression modeling to predict "My Patient" using development and validation subsets drawn from the same patient set. Quality of care was then assessed by "My Patient" or "Not My Patient" designation by analyzing cancer screening test rates.
Overall, PCPs designated 11,226 patients (68.3%, range per provider 15% to 93%) to be "My Patient." The model accurately categorized patients in development and validation subsets (combined sensitivity 80.4%, specificity 93.7%, and positive predictive value 96.5%). To achieve positive predictive values of > 90% for individual PCPs, the model excluded 19.6% of PCP "My Patients" (range 5.5% to 75.3%). Cancer screening rates were higher among model-predicted "My Patients."
Nearly one-third of patients seen were considered "Not My Patient" by the PCP, although this proportion varied widely. We developed and validated a simple model to link specific patients and PCPs. Such efforts may help effectively target interventions to improve primary care quality.
评估个体初级保健医生(PCP)提供的医疗服务质量可能会受到限制,因为不知道PCP认为自己对哪些患者负有个人责任。
开发并验证一种将患者与特定PCP联系起来的模型。
回顾性便利样本。
来自学术性成人初级保健网络中10个执业地点的18名PCP。
每位PCP回顾了前3年所有门诊患者的记录(共回顾了16435名患者),并将每位患者指定为“我的患者”或“非我的患者”。使用这个参考标准,我们通过逻辑回归建模开发了一种算法,使用从同一患者集中抽取的开发子集和验证子集来预测“我的患者”。然后通过分析癌症筛查测试率,根据“我的患者”或“非我的患者”的指定来评估医疗服务质量。
总体而言,PCP将11226名患者(68.3%,每位提供者的范围为15%至93%)指定为“我的患者”。该模型在开发子集和验证子集中对患者进行了准确分类(综合灵敏度为80.4%,特异性为93.7%,阳性预测值为96.5%)。为了使个体PCP的阳性预测值>90%,该模型排除了19.6%的PCP“我的患者”(范围为5.5%至75.3%)。模型预测的“我的患者”中的癌症筛查率更高。
尽管这一比例差异很大,但近三分之一的就诊患者被PCP认为是“非我的患者”。我们开发并验证了一个简单的模型来将特定患者与PCP联系起来。此类努力可能有助于有效地针对性干预以提高初级保健质量。