Department of Anesthesia and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States.
Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States.
Appl Clin Inform. 2020 May;11(3):442-451. doi: 10.1055/s-0040-1713133. Epub 2020 Jun 24.
Patient attribution, or the process of attributing patient-level metrics to specific providers, attempts to capture real-life provider-patient interactions (PPI). Attribution holds wide-ranging importance, particularly for outcomes in graduate medical education, but remains a challenge. We developed and validated an algorithm using EHR data to identify pediatric resident PPIs (rPPIs).
We prospectively surveyed residents in three care settings to collect self-reported rPPIs. Participants were surveyed at the end of primary care clinic, emergency department (ED), and inpatient shifts, shown a patient census list, asked to mark the patients with whom they interacted, and encouraged to provide a short rationale behind the marked interaction. We extracted routine EHR data elements, including audit logs, note contribution, order placement, care team assignment, and chart closure, and applied a logistic regression classifier to the data to predict rPPIs in each care setting. We also performed a comment analysis of the resident-reported rationales in the inpatient care setting to explore perceived patient interactions in a complicated workflow.
We surveyed 81 residents over 111 shifts and identified 579 patient interactions. Among EHR extracted data, time-in-chart was the best predictor in all three care settings (primary care clinic: odds ratio [OR] = 19.36, 95% confidence interval [CI]: 4.19-278.56; ED: OR = 19.06, 95% CI: 9.53-41.65' inpatient OR = 2.95, 95% CI: 2.23-3.97). Primary care clinic and ED specific models had statistic values > 0.98, while the inpatient-specific model had greater variability (statistic = 0.89). Of 366 inpatient rPPIs, residents provided rationales for 90.1%, which were focused on direct involvement in a patient's admission or transfer, or care as the front-line ordering clinician (55.6%).
Classification models based on routinely collected EHR data predict resident-defined rPPIs across care settings. While specific to pediatric residents in this study, the approach may be generalizable to other provider populations and scenarios in which accurate patient attribution is desirable.
患者归因,即根据特定提供者分配患者水平指标的过程,旨在捕捉实际的医患互动(PPI)。归因具有广泛的重要性,特别是在住院医师医学教育的结果方面,但仍然具有挑战性。我们使用电子健康记录(EHR)数据开发并验证了一种算法,以识别儿科住院医师的 PPI(rPPI)。
我们前瞻性地调查了三个护理环境中的住院医师,以收集自我报告的 rPPI。参与者在初级保健诊所、急诊部(ED)和住院病房结束时接受调查,展示患者普查名单,要求他们标记与他们互动的患者,并鼓励他们提供标记互动背后的简短理由。我们从常规 EHR 数据元素中提取数据,包括审核日志、笔记贡献、订单放置、护理团队分配和图表关闭,并将逻辑回归分类器应用于数据,以预测每个护理环境中的 rPPI。我们还对住院病房中住院医师报告的理由进行了评论分析,以探索在复杂工作流程中感知到的患者互动。
我们调查了 111 个班次中的 81 名住院医师,并确定了 579 次患者互动。在提取的 EHR 数据中,在所有三个护理环境中,时间在图表中是最好的预测因素(初级保健诊所:优势比 [OR] = 19.36,95%置信区间 [CI]:4.19-278.56;ED:OR = 19.06,95% CI:9.53-41.65'住院 OR = 2.95,95% CI:2.23-3.97)。初级保健诊所和 ED 的特定模型具有大于 0.98 的统计值,而住院病房特定模型具有更大的可变性(统计值= 0.89)。在 366 例住院 rPPI 中,住院医师为 90.1%提供了理由,这些理由集中在直接参与患者的入院或转院,或作为一线下医嘱的临床医生进行护理(55.6%)。
基于常规收集的 EHR 数据的分类模型可预测护理环境中的住院医师定义的 rPPI。虽然本研究针对儿科住院医师,但该方法可能适用于其他提供者群体和需要准确患者归因的情况。