Suppr超能文献

转座子诱变鉴定出与肺炎支原体滑行运动相关的基因。

Transposon mutagenesis identifies genes associated with Mycoplasma pneumoniae gliding motility.

作者信息

Hasselbring Benjamin M, Page Clinton A, Sheppard Edward S, Krause Duncan C

机构信息

Department of Microbiology, University of Georgia, Athens, 523 Biological Sciences Building, GA 30602, USA.

出版信息

J Bacteriol. 2006 Sep;188(17):6335-45. doi: 10.1128/JB.00698-06.

Abstract

The wall-less prokaryote Mycoplasma pneumoniae, a common cause of chronic respiratory tract infections in humans, is considered to be among the smallest and simplest known cells capable of self-replication, yet it has a complex architecture with a novel cytoskeleton and a differentiated terminal organelle that function in adherence, cell division, and gliding motility. Recent findings have begun to elucidate the hierarchy of protein interactions required for terminal organelle assembly, but the engineering of its gliding machinery is largely unknown. In the current study, we assessed gliding in cytadherence mutants lacking terminal organelle proteins B, C, P1, and HMW1. Furthermore, we screened over 3,500 M. pneumoniae transposon mutants individually to identify genes associated with gliding but dispensable for cytadherence. Forty-seven transformants having motility defects were characterized further, with transposon insertions mapping to 32 different open reading frames widely distributed throughout the M. pneumoniae genome; 30 of these were dispensable for cytadherence. We confirmed the clonality of selected transformants by Southern blot hybridization and PCR analysis and characterized satellite growth and gliding by microcinematography. For some mutants, satellite growth was absent or developed more slowly than that of the wild type. Others produced lawn-like growth largely devoid of typical microcolonies, while still others had a dull, asymmetrical leading edge or a filamentous appearance of colony spreading. All mutants exhibited substantially reduced gliding velocities and/or frequencies. These findings significantly expand our understanding of the complexity of M. pneumoniae gliding and the identity of possible elements of the gliding machinery, providing a foundation for a detailed analysis of the engineering and regulation of motility in this unusual prokaryote.

摘要

无细胞壁的原核生物肺炎支原体是人类慢性呼吸道感染的常见病因,被认为是已知能够自我复制的最小且最简单的细胞之一,然而它却有着复杂的结构,拥有一种新型细胞骨架和一个分化的末端细胞器,这些结构在黏附、细胞分裂和滑行运动中发挥作用。最近的研究结果已开始阐明末端细胞器组装所需的蛋白质相互作用层次,但对其滑行机制的构建却知之甚少。在本研究中,我们评估了缺乏末端细胞器蛋白B、C、P1和HMW1的细胞黏附突变体中的滑行情况。此外,我们对3500多个肺炎支原体转座子突变体进行了逐一筛选,以鉴定与滑行相关但对细胞黏附并非必需的基因。对47个具有运动缺陷的转化体进行了进一步表征,转座子插入定位到32个不同的开放阅读框,这些开放阅读框广泛分布于肺炎支原体基因组中;其中30个对细胞黏附并非必需。我们通过Southern印迹杂交和PCR分析证实了所选转化体的克隆性,并通过显微电影摄影术对卫星生长和滑行进行了表征。对于一些突变体,卫星生长缺失或比野生型发育得更慢。其他突变体产生的菌苔样生长基本没有典型的小菌落,还有一些突变体的前沿暗淡、不对称或菌落扩散呈丝状外观。所有突变体的滑行速度和/或频率均大幅降低。这些发现显著扩展了我们对肺炎支原体滑行复杂性以及滑行机制可能元件身份的理解,为详细分析这种特殊原核生物的运动构建和调控奠定了基础。

相似文献

7
Mycoplasma pneumoniae J-domain protein required for terminal organelle function.终末细胞器功能所需的肺炎支原体J结构域蛋白。
Mol Microbiol. 2009 Mar;71(5):1296-307. doi: 10.1111/j.1365-2958.2009.06602.x. Epub 2009 Jan 29.

引用本文的文献

4
Exploring Biology: Opportunities and Challenges.探索生物学:机遇与挑战。
Front Microbiol. 2020 Oct 21;11:589279. doi: 10.3389/fmicb.2020.589279. eCollection 2020.
5
Clinical characteristics of infections caused by Mycoplasma pneumoniae P1 genotypes in children.儿童肺炎支原体 P1 基因型感染的临床特征。
Eur J Clin Microbiol Infect Dis. 2018 Jul;37(7):1265-1272. doi: 10.1007/s10096-018-3243-5. Epub 2018 Mar 30.
9
Systematic Structural Analyses of Attachment Organelle in Mycoplasma pneumoniae.肺炎支原体附着细胞器的系统结构分析
PLoS Pathog. 2015 Dec 3;11(12):e1005299. doi: 10.1371/journal.ppat.1005299. eCollection 2015 Dec.

本文引用的文献

4
Essential genes of a minimal bacterium.最小细菌的必需基因。
Proc Natl Acad Sci U S A. 2006 Jan 10;103(2):425-30. doi: 10.1073/pnas.0510013103. Epub 2006 Jan 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验