Aloulou Ahmed, Rodriguez Jorge A, Fernandez Sylvie, van Oosterhout Dirk, Puccinelli Delphine, Carrière Frédéric
Laboratoire d'Enzymologie Interfaciale et de Physiologie de la Lipolyse, CNRS UPR 9025, 31 Chemin Joseph Aiguier, 13009 Marseille Cedex 20, France.
Biochim Biophys Acta. 2006 Sep;1761(9):995-1013. doi: 10.1016/j.bbalip.2006.06.009. Epub 2006 Jul 8.
Many enzymes are active at interfaces in the living world (such as in the signaling processes at the surface of cell membranes, digestion of dietary lipids, starch and cellulose degradation, etc.), but fundamental enzymology remains largely focused on the interactions between enzymes and soluble substrates. The biochemical and kinetic characterization of lipolytic enzymes has opened up new paths of research in the field of interfacial enzymology. Lipases are water-soluble enzymes hydrolyzing insoluble triglyceride substrates, and studies on these enzymes have led to the development of specific interfacial kinetic models. Structure-function studies on lipases have thrown light on the interfacial recognition sites present in the molecular structure of these enzymes, the conformational changes occurring in the presence of lipids and amphiphiles, and the stability of the enzymes present at interfaces. The pH-dependent activity, substrate specificity and inhibition of these enzymes can all result from both "classical" interactions between a substrate or inhibitor and the active site, as well as from the adsorption of the enzymes at the surface of aggregated substrate particles such as oil drops, lipid bilayers or monomolecular lipid films. The adsorption step can provide an alternative target for improving substrate specificity and developing specific enzyme inhibitors. Several data obtained with gastric lipase, classical pancreatic lipase, pancreatic lipase-related protein 2 and phosphatidylserine-specific phospholipase A1 were chosen here to illustrate these specific features of interfacial enzymology.
许多酶在生物界的界面处具有活性(例如在细胞膜表面的信号传导过程、膳食脂质的消化、淀粉和纤维素的降解等过程中),但基础酶学在很大程度上仍主要关注酶与可溶性底物之间的相互作用。脂解酶的生化和动力学特性为界面酶学领域开辟了新的研究途径。脂肪酶是水解不溶性甘油三酯底物的水溶性酶,对这些酶的研究导致了特定界面动力学模型的发展。对脂肪酶的结构-功能研究揭示了这些酶分子结构中存在的界面识别位点、在脂质和两亲物存在下发生的构象变化以及存在于界面处的酶的稳定性。这些酶的pH依赖性活性、底物特异性和抑制作用既可以源于底物或抑制剂与活性位点之间的“经典”相互作用,也可以源于酶在聚集的底物颗粒表面(如油滴、脂质双层或单分子脂质膜)的吸附。吸附步骤可以为提高底物特异性和开发特异性酶抑制剂提供一个替代靶点。这里选择了用胃脂肪酶、经典胰脂肪酶、胰脂肪酶相关蛋白2和磷脂酰丝氨酸特异性磷脂酶A1获得的一些数据来说明界面酶学的这些特定特征。