Wang Fei, Vemuri Baba C, Eisenschenk Stephan J
Department of Computer & Information Sciences & Engineering, Room No. E319, CISE Building, P.O. Box 116120, University of Florida, Gainesville, FL 32611, USA.
Acad Radiol. 2006 Sep;13(9):1104-11. doi: 10.1016/j.acra.2006.05.017.
Segmentation of anatomic structures from magnetic resonance brain scans can be a daunting task because of large inhomogeneities in image intensities across an image and possible lack of precisely defined shape boundaries for certain anatomical structures. One approach that has been quite popular in the recent past for these situations is the atlas-based segmentation. The atlas, once constructed, can be used as a template and can be registered nonrigidly to the image being segmented thereby achieving the desired segmentation. The goal of our study is to segment these structures with a registration assisted image segmentation technique.
We present a novel variational formulation of the registration assisted image segmentation problem which leads to solving a coupled set of nonlinear Partial Differential Equations (PDEs) that are solved using efficient numeric schemes. Our work is a departure from earlier methods in that we can simultaneously register and segment in three dimensions and easily cope with situations where the source (atlas) and target images have very distinct intensity distributions.
We present several examples (20) on synthetic and (3) real data sets along with quantitative accuracy estimates of the registration in the synthetic data case.
The proposed atlas-based segmentation technique is capable of simultaneously achieve the nonrigid registration and the segmentation; unlike previous methods of solution for this problem, our algorithm can accommodate for image pairs having very distinct intensity distributions.
从磁共振脑部扫描中分割解剖结构可能是一项艰巨的任务,因为图像中强度存在很大的不均匀性,并且某些解剖结构可能缺乏精确定义的形状边界。对于这些情况,最近相当流行的一种方法是基于图谱的分割。一旦构建了图谱,就可以将其用作模板,并将其非刚性配准到要分割的图像上,从而实现所需的分割。我们研究的目标是使用配准辅助图像分割技术来分割这些结构。
我们提出了一种配准辅助图像分割问题的新颖变分公式,该公式导致求解一组耦合的非线性偏微分方程(PDE),这些方程使用高效的数值方案求解。我们的工作与早期方法的不同之处在于,我们可以在三维空间中同时进行配准和分割,并且能够轻松应对源(图谱)图像和目标图像具有非常不同强度分布的情况。
我们展示了几个关于合成数据集的示例(20个)和真实数据集的示例(3个),以及合成数据情况下配准的定量精度估计。
所提出的基于图谱的分割技术能够同时实现非刚性配准和分割;与解决此问题的先前方法不同,我们的算法可以适应强度分布非常不同的图像对。