Fanning Ellen, Klimovich Vitaly, Nager Andrew R
Department of Biological Sciences, Vanderbilt University, VU Station B 351634, Nashville, TN 37235-1634, USA.
Nucleic Acids Res. 2006;34(15):4126-37. doi: 10.1093/nar/gkl550. Epub 2006 Aug 25.
Processing of DNA in replication, repair and recombination pathways in cells of all organisms requires the participation of at least one major single-stranded DNA (ssDNA)-binding protein. This protein protects ssDNA from nucleolytic damage, prevents hairpin formation and blocks DNA reannealing until the processing pathway is successfully completed. Many ssDNA-binding proteins interact physically and functionally with a variety of other DNA processing proteins. These interactions are thought to temporally order and guide the parade of proteins that 'trade places' on the ssDNA, a model known as 'hand-off', as the processing pathway progresses. How this hand-off mechanism works remains poorly understood. Recent studies of the conserved eukaryotic ssDNA-binding protein replication protein A (RPA) suggest a novel mechanism by which proteins may trade places on ssDNA by binding to RPA and mediating conformation changes that alter the ssDNA-binding properties of RPA. This article reviews the structure and function of RPA, summarizes recent studies of RPA in DNA replication and other DNA processing pathways, and proposes a general model for the role of RPA in protein-mediated hand-off.
在所有生物体的细胞中,DNA在复制、修复和重组途径中的加工过程需要至少一种主要的单链DNA(ssDNA)结合蛋白的参与。这种蛋白可保护ssDNA免受核酸酶的损伤,防止发夹结构形成,并阻止DNA重新退火,直到加工途径成功完成。许多ssDNA结合蛋白在物理和功能上与多种其他DNA加工蛋白相互作用。随着加工途径的推进,这些相互作用被认为在时间上对在ssDNA上“交换位置”的一系列蛋白质进行排序和引导,这一模型被称为“交接”。这种交接机制如何工作仍知之甚少。最近对保守的真核生物ssDNA结合蛋白复制蛋白A(RPA)的研究提出了一种新机制,即蛋白质可能通过与RPA结合并介导构象变化来改变RPA的ssDNA结合特性,从而在ssDNA上交换位置。本文综述了RPA的结构和功能,总结了最近关于RPA在DNA复制和其他DNA加工途径中的研究,并提出了RPA在蛋白质介导的交接中作用的一般模型。